
How not to prove your election outcome

Thomas Haines∗, Sarah Jamie Lewis†, Olivier Pereira‡, and Vanessa Teague§

∗Norwegian University of Science and Technology
†Open Privacy Research Society, Canada

‡UCLouvain – ICTEAM – B-1348 Louvain-la-Neuve, Belgium
§The University of Melbourne – School of Computing and Information Systems, Melbourne, Australia

Abstract—The Scytl/SwissPost e-voting solution was intended
to provide complete verifiability for Swiss government elections.
We show failures in both individual verifiability and universal
verifiability (as defined in Swiss Federal Ordinance 161.116),
based on mistaken implementations of cryptographic components.
These failures allow for the construction of “proofs” of an
accurate election outcome that pass verification though the
votes have been manipulated. Using sophisticated cryptographic
protocols without a proper consideration of what properties they
offer, and under which conditions, can introduce opportunities
for undetectable fraud even though the system appears to allow
verification of the outcome.

Our findings are immediately relevant to systems in use in
Switzerland and Australia, and probably also elsewhere.

I. INTRODUCTION

Verifiability is a must-have for elections: if the outcome

doesn’t come with evidence of its correctness that can be

verified by third parties, then the results can be manipulated. But

designing verifiable systems is challenging: if a cryptographic

protocol is designed or implemented in secret, if it comes with

no convincing proof of the soundness of its verification process,

and if no opportunity for independent scrutiny is given, then

it is unlikely that it offers the security properties it advertises.

It might seem to offer a chance to check the results, but those

checks might not really prove that the election outcome is right.

We show multiple independent ways that cryptographic errors

in Scytl’s e-voting protocol sVote, proposed by SwissPost for

Swiss government elections, can be used to fake a proof of an

accurate election outcome that passes verification even though

the votes have been manipulated. Our analysis focuses on sVote

version 2.1, which purported to provide complete verifiability

and was applying for certification for use by up to 100% of

the electorate at the time we began our examination.

Our results have immediate implications for elections in

Switzerland and New South Wales. One of the identified

weaknesses was also present in version 1.0 of the sVote protocol,

which has been deployed in binding elections by several Swiss

cantons, and another was present in a system used in a state

election in New South Wales. We do not know whether other

countries using software from the same provider are affected

by any of the weaknesses that we found: many other countries

use the same vendor but do not publish their code.

Because of the findings discussed in this paper, no version

of sVote was used during the May 2019 Swiss referendum

or the Federal elections of October 2019. Both the Swiss and

New South Wales systems have been updated for most (though

not all) of the issues we describe here, though we have not

thoroughly examined the remediation attempts.

This is unlikely to be the last proprietary verifiable multiparty

computation protocol that doesn’t meet its advertised security

goals. The incorrect use of sophisticated protocols such as

zero knowledge proofs (ZKPs) and multiparty computation

(MPC) demonstrates pitfalls that potentially affect systems for

applications other than voting. Many of the components have

been proven secure elsewhere, but under assumptions that are

not realised in this system. We provide a short summary of the

generalisable failures we observed:

1) Statically secure primitives are used in an adaptive
setting. The sVote system uses Maurer’s unified proofs

framework [1] for many of its ZKPs. These are proven

to offer security in an interactive and static model (i.e.
when the statement is given to the prover), but are used

in sVote in a setting where the prover can choose the

statement afterwards, thus making it vulnerable to the

pitfall described in [2].

2) The facts proven in the ZKPs are not sufficient. A

ZKP proves a particular statement (or more precisely,

membership of a specific language). But in sVote, the

conjunction of the facts proven by the voting client is not

sufficient to imply the desired properties about the votes.

3) The multiparty protocol isn’t secure against collusion.
sVote uses an original multiparty protocol to compute

the codes to be returned to voters. The protocol has five

authorities and is intended to tolerate some dishonest

participants. We show that one of them can misbehave

alone (with a cheating client) and break verifiability.

4) Hardness assumptions are not guaranteed. Most of

the protocols used in sVote rely on the hardness of some

computational problems. For instance, in various places,

it is expected that discrete logs of various group elements

in various bases are unknown. However, sVote offers no

evidence of how the group parameters and group elements

are generated, which makes it impossible to verify whether

a prover may know a trapdoor that would violate the

specific instances of the computational problems used in

the system. This can be used to violate both individual

and universal verifiability in sVote.

Every one of these errors allows a successful vote manip-

ulation that passes verification, though in some cases it is

informally clear that something has gone wrong.

We describe the code and specifications as released for

review in March 2019. We illustrate the ZKP unsoundness from

Sections III and VI with cheating examples that pass verification

in that code. These are available at https://git.openprivacy.

ca/swiss-post-scytl-disclosure/cheating-proof-transcripts along

with the rest of the codebase, so others can check that our

proofs pass verification. Some of these issues have now been

at least partially remediated [3], [4].

We also provide a list of other cryptographic errors in OR

proofs, hashing, etc., though they do not seem to lead to attacks.

These problems have been found thanks to Swiss Federal

Chancellery Ordinance 161.116 on Electronic Voting, which

mandates a public review of electronic voting systems used at

a certain scale in Switzerland. It also requires that “[the source

code] must be easily obtainable, free of charge, on the internet”

and that “anyone is entitled to examine, modify, compile and

execute the source code for ideational purposes, and to write

and publish studies thereon.” It is unlikely that the protocols

deployed in other countries, which do not mandate such public

review, would offer any better security guarantees. And in the

absence of a legal framework supporting the open analysis and

discussion of the properties of these protocols, the only people

who have an incentive to find such issues are those who would

seek to exploit them silently.

A. History and security goals of sVote in Switzerland

sVote 1.0 has been used since 2016 in four Swiss cantons1

and was certified for use by up to 50% of voters.

In order to obtain this level of certification, individual
verifiability is required. Before the election, each voter receives

a paper code sheet by postal mail, which contains one secret

choice code for each possible voting option. Voters can then

enter a vote on an untrusted web client and receive assurance

that their vote intent has been properly recorded by receiving

choice codes back electronically from the voting system and

matching these codes with those written on their code sheet.

A malicious voting client that alters a vote should be detected

when the voter doesn’t receive the right codes.

sVote 2.1 was proposed in 2018 for certification for up

to 100% of the voters of the cantons willing to use it.

To obtain this certification, ordinance 161.116 requires that

individual verifiability holds as long as at least one of the

server-side components is honest. It also requires that the

system offers a form of universal verifiability, which guarantees

(approximately) that the result of an election is correct as long

as at least one server-side component is honest. (The traditional

universal verifiability notion requires that this property holds

even if all the server-side components of the system are

dishonest [5].) When combined with individual verifiability,

the property is called “complete verifiability.” In this setting no

public bulletin board is needed, which contrasts with traditional

universally verifiable voting schemes.

Any voting system that decrypts individual votes (even paper

ones) must mix the votes before decryption, which introduces a

1See https://www.evoting.ch/en.

potential point for cheating by substituting rather than truthfully

shuffling. Like many other systems, sVote 2.1 attempts to

achieve universal verifiability (while protecting vote privacy)

with ZKPs of both honest mixing and correct decryption. It

should not be feasible to produce a passing proof transcript for

either mixing or decryption unless the set of encrypted votes

entered in to the system matches the output plaintext votes.

The specification and code examined in this paper were

made available by SwissPost under a non-disclosure agreement

(NDA). This NDA required that “No Vulnerability shall be

published within a period of forty five (45) days since the last

communication exchanged with the Owners with regards to

such potential Vulnerability”. However, the specification and

code also circulated fairly freely online, and this is how we

accessed them. Based on our findings, we contacted the Federal

Chancellery and Swiss Post and agreed on a synchronized

communication agenda supporting public discussion.

B. Structure of this paper

We give a technical overview of the system, then demonstrate

various attacks against complete verifiability.

The first three attacks concern individual verifiability. In

Section III a malicious client uses the unsoundness of the ZKPs

to retrieve the expected choice code values despite submitting

a nonsense vote. The second attack, described in Section IV,

allows a cheating client to submit a mix of valid and invalid

vote choices while retrieving the expected vote codes for all but

one of them. It is dependent on either a certain interpretation

of the (ambiguous) specification, or collusion from one server-

side component. This is possible even if the ZKPs are sound,

because they are not sufficient to prove that the vote is well

formed. In Section V we show that even if the vote is well-

formed, a single cheating server-side component can substitute

the choice code and still pass audit if the voting parameters

are maliciously generated.

We then turn to universal verifiability and show three more

attacks. In Section VI, we examine the proof of proper mixing

and show that the non-verifiable generation of group parameters

allows a cheating mix server to alter votes but pass verification.

We give two examples of how this could be used. The first

example allows the first mix to substitute votes for which it

knows the randomness used to generate the encrypted vote

(which could result from leakage from the client). The second

example does not require knowledge of the random factors

used to generate the votes, and could be used by the last mix

in the sequence to alter votes with no client collusion.

Then, in Section VII, we observe that the use of non-

adaptive ZKPs for ballot decryption also makes it possible

to substitute nonsense votes for validly-submitted ones, and

still pass verification.

Finally, motivated by the impact of the non-verifiable group

parameter generation specified in sVote, we review various

other mix-net implementations in Section VIII and observe

that this issue is fairly widespread.

Some other cryptographic issues are described in Ap-

pendix E.

II. TECHNICAL OVERVIEW

We now describe the main cryptographic aspects of sVote

2.1. The following description omits or presents in a simplified

way various components that are irrelevant for our discussions

(e.g., the handling of write-ins).

A. System components and Cryptographic setting

The main components of the system are:

• A print office, which generates and prints the code sheets,

and is trusted.

• A voting client, which is trusted for privacy only.

• A voting server, which coordinates the server-side com-

ponents of the election and is not trusted.

• Return codes control components (CCRs), among which

one is assumed to be honest.

• Mixing control components (CCMs), among which one is

assumed to be honest.

• Auditors, among which one is assumed to be honest.

These components have signing keys, which they use to

authenticate (and log) their behavior, but we ignore them here.

The code sheet printing service needs to be trusted: it sees all

return codes corresponding to all voter choices. If it colluded

with a malicious code return service or with a malicious voting

client, it would be possible to return any choice codes that a

voter expects to see, whatever vote was recorded.

B. Cryptographic setup

The core of the cryptographic protocol happdens in a group

G of prime order q made of the quadratic residues modulo a

2048-bits prime p = 2q+1. The group parameters are chosen

so that g = 2 generates G.

Before the election, each possible answer offered on a ballot

is assigned a small prime vi in G. Each question on a ballot

has at least three possible answers: yes, no, and blank, though

it may instead have several different candidates to choose from.

sVote 2.1 uses ElGamal encryption [6] over G. Each message

is a small prime in G, or the product of such primes. All

choices for a ballot are multiplied together, encrypted as a

single ciphertext, and sent to the server.

So, whatever vote is cast, the number of small primes needed

to represent the vote is fixed. The system expects that the

product of all the vi primes selected for any ballot will be

smaller than p.

Sometimes El Gamal is used in its multi-element version.

A public key is a tuple (K(1),K(2) . . . ,K(ψ)) (where ψ is the

maximum number of questions on the ballot). The correspond-

ing private key is the tuple of discrete logs of the public key,

mod p. A message m, which is a tuple (m1,m2, . . . ,mψ) of

quadratic residues mod p, is encrypted by generating a random

r ∈ [1,q] and setting the ciphertext to

E(m,r) = (gr,m1K(1)r,m2K(2)r . . . ,mψ K(ψ)r).

(This is not our chosen notation: to be clear, K(i)r represents

raising the i-th element of the public key to r.)

The client sends both a vote ciphertext and a set of partial
Choice Codes that are used to compute the choice codes, along

with a non-interactive ZKP that they are consistent—this is

detailed below. The server-side has two roles: it first computes

the choice codes for each voter and then, when all the votes

have been received, it mixes and decrypts the votes.

This means there are three uses of non-interactive ZKPs:

1) the client uses three ZKPs to prove that the partial choice

codes match the vote;

2) the server-side uses ZKPs to prove that the codes it returns

match the partial choice codes submitted by the client;

3) the server-side uses ZKPs to prove that the complete list

of votes is properly mixed and decrypted.

We follow the notations of the sVote protocol specification [7,

Section 5.4], with some simplifications. The ballot preparation

and individual verifiability processes rely on the following keys.

1) hCCM is the election public key, a standard single-element

El Gamal key.

2) xCCM , the corresponding private key, is secret-shared

among the CCM’s.

3) pk = pk(1), . . . ,pk(ψ) is the choice return code public

key, which is a multi-element El Gamal public key. The

parameter ψ is the number of options to be expressed by

each voter.

4) skCCR = sk(1)CCR, . . . ,sk(ψ)
CCR, the corresponding private key,

is secret-shared among the CCR’s.

5) Kid is the verification card public key, one for each

verification card id (i.e. for each voter).

6) kid is the corresponding private key, held by the voting

client.

7) k̂, which is different for each voter,2 is secret-shared

among the CCR’s.

8) k = kid · k̂ is used to retrieve the choice code.

1) Ballot preparation and validity proof: The client prepares

and proves validity of a vote as follows. Suppose the voter

selected ψ options v1,v2, . . . ,vψ , each corresponding to an

answer to a question in the election. The voting client has a

codes card ID id and a card-specific private key kid .

The vote is Πψ
i=1vi. For each choice vi, the client sends a

partial choice code pCCi = vkid
i which is used later to compute

the choice code that is returned to the voter. Obviously, the

partial choice codes must match the vote, or the client can

cheat by sending the vote that it wants with the partial choice

codes that will please the voter. Since all these values are sent

encrypted, the proof that they are consistent is quite involved.

Below, E1 is the encrypted vote and E2 is the encrypted partial

choice codes. The ciphertext F1 is created only to prove that

E2 contains the matching partial choice codes for the vote in

E1. In Step 6, πe proves that F1 matches the vote, E1; in Step 8,

πp proves that F1 matches the choice codes, E2. Hence E1 and

E2 are meant to match each other. The voting client

2This is what the spec says, but the notation for these values is very strange:
the sum of four shared values indexed by id is not itself indexed by id—
we assume that all three of these values (k̂,kid ,k) are meant to vary among
voters/cards.

1) computes the vote ciphertext

E1 = (gr,Πψ
i=1vi ·ELr).

2) For each choice vi (i = 1, . . . ,ψ), it computes a partial

choice code pCCi = vkid
i .

3) It encrypts each pCCi with a separate element of the

multi-element key pk, as

E2 = (gr′ ,pCC1 · (pk(1))r′ , . . . ,pCCψ · (pk(ψ))r′).

4) It uses the Schnorr protocol [8] to produce a proof of

knowledge πs of r used in E1.

5) It computes F1 as Ekid
1 , that is,

F1 = (grkid ,(Πψ
i=1vi ·ELr)kid).

6) It generates a proof of exponentiation πe to prove that

(Kid ,F1) is indeed equal to (gkid ,Ekid
1) for a secret kid .

7) It multiplies all but the first element of E2 together to

form a standard El Gamal encryption.

Ẽ2 = (gr′ ,Πψ
i=1pk(i)r′pCCi).

8) It generates a plaintext equality proof πp to show that F1

and Ẽ2 encrypt the same value (that is, Πψ
i=1 pkid

i), w.r.t.

EL in the first case and w.r.t. Πψ
i=1pk(i) in the second

case.

9) The vote, defined as E1,E2,F1,πs,πe,πp, is submitted to

the server.

2) Ballot Processing and code return: Now, for each vote id,

the server-side needs to verify the proofs, compute the choice

codes and send them back to the voter, who can then check

them on her codes card.

Section 5.4.3 of the sVote2.1 spec [7] describes an original

verifiable multiparty protocol in which the Control Components

(CCR1,CCR2,CCR3,CCR4) and the Vote Verification Context

(VVC) decrypt the partial choice codes, retrieve the appropriate

choice code from a code table and prove that they have

computed it correctly. This is summarised below. The intended

property is that an incorrect generation/retrieval can be detected

by the auditors if not all the CCRs collude. The VVC is not

meant to be trusted.

1) Each Control Component (CCR) verifies the vote ZKPs

and, if they pass, uses its share of sk(i)CCR and k̂ to compute

a partial decryption of E2 exponentiated by k̂. (Details are

omitted.)

2) This allows the VVC to generate the pre-Choice return

code for each i (i = 1, . . . ,ψ) as

pCid
i = g−r′·sk(i)CCR·k̂ · (pk(i)CCR)

r′·k̂ · vkid ·k̂
i

= vk
i

3) The VVC then computes each long Choice Code

lCCid
i = SHA256(vk

i ||id||public data)

4) For i= 1, . . . ,ψ , the VVC uses SHA256(lCCi) as an index

into a precomputed table of encrypted choice codes. It

derives the decryption key for the i-th choice code from

lCCi and a secret known only to the VVC. The decrypted

choice codes are returned to the voter.

5) Finally, the encrypted vote E1 is passed to the mix servers.

Note that the VVC is not meant to be able to decrypt any

choice codes for which it has not received a corresponding

vote: because it does not know k, there is no obvious way for

it to generate vk
i and hence lCCi.

There is a second code-based phase in which the voter can

confirm that she received the choice code she expected, and

thus finalise the casting of her vote. The details are similar to

the choice-code process.

A later process for mixing and decrypting the votes is

described in Section VI. Each vote is factorized at the end

to recover the individual primes.

III. PITFALLS OF THE FIAT-SHAMIR TRANSFORM: WHY

INDIVIDUAL VERIFIABILITY FAILS (1)

In this section we show that the vote validity NIZKPs are

not sound, which can be used by a malicious client to submit

a nonsense vote, prove it is valid, and retrieve the right choice

codes. The voter would then consider that her vote intent was

correctly captured. However, when this vote was decrypted

after being mixed, it would be invalid.

The Fiat-Shamir transform [9] is a standard method of turn-

ing an interactive proof into a non-interactive one. Informally,

the idea is simple: rather than waiting for the verifier to generate

a random challenge, the prover generates a challenge by hashing

the prover’s initial commitments. This can be proven to be

secure assuming that the hash function behaves as a random

oracle.

sVote uses Maurer’s unified proofs framework [1], which

is proven secure in the non-adaptive setting, in which the

statement is given to the prover. However, sVote applies it in an

adaptive setting, in which the prover can choose the statement

about which it wants to make a proof. It thus becomes crucial

to also include that statement, in full, into the inputs of the

hash function—soundness collapses otherwise [2].

The requirement of adaptive security is quite common in

voting systems and, as we demonstrate here, it is needed for

the sVote protocol. We want to stress that this issue is not

present in Maurer’s framework [1]—the problem lies in the

misalignment of assumptions in Maurer’s security proof with

the setting of sVote.

Interestingly, the decryption proof described in the Verifia-

bility Security Proof report [10] is different from the one that

appears in the sVote protocol specification [7], which is the

one implemented in the system. The ZKP described in that

Security Proof report appears to be correct.

A. Producing a false ballot validity proof

Suppose for simplicity that the voter wants to submit a

single vote v encoded as a prime quadratic residue mod p.

(The extension to multiple (prime) vote choices is immediate.)

Write F1 as (F10,F11) and similarly, E1 = (E10,E11).

1) The proof of exponentiation: sVote’s exponentiation proof

is used in step 6 of ballot generation (Section II) to prove

that F1 is properly computed as Ekid
1 . The method is a slight

generalisation of a well-known proof method due to Chaum

and Pedersen [11]. It proceeds as follows:

1) Pick a random a and compute (B1,B2,B3) = (ga,Ea
10,E

a
11).

2) Compute c = H(K,F1,B1,B2,B3).
3) Compute z = a+ ckid .

The proof consists of (c,z). It is verified by computing B′
1 =

gz/Kc, B′
2 = Ez

10/Fc
10, B′

3 = Ez
11/Fc

11, and checking that c equals

H(K,F1,B′
1,B

′
2,B

′
3).

2) Lack of adaptive soundness of the proof of exponentiation:
As discussed above, this proof lacks adaptive soundness. The

computation of the challenge c (in bold) shows that g and E1

are not hashed, so there is no guarantee that they are chosen

before the proof is computed. This can be used to generate a

proof of a statement that is not true.
In what follows, we assume that g was generated honestly,

in a verifiable way (but this is not required by the sVote

specification) and focus on E1. A malicious adaptive prover

could then proceed as follows.
Start by picking F1 as a random encryption of pCC1 for the

vote the voter intended, that is, as (gr, pCC1 ·ELr). Then:

1) Pick random (a1,a2,a3) and compute (B1,B2,B3) =
(ga1 ,ga2 ,ga3).

2) Compute c = H(K,F1,B1,B2,B3).
3) Compute z = a1 + ckid .

The proof is (c,z). Then, set E1 = ((B2 ·Fc
10)

1/z,(B3 ·Fc
11)

1/z),
which guarantees that the verification equation passes. But

with overwhelming probability, F1 �= Ekid
1 , so E1 will not be an

encryption of the voter’s choice.
3) Why individual verifiability fails: We now show how

this can be used to construct a complete ballot that passes

verification and returns the right choice codes, though it does

not convey the voter’s chosen vote.
Running the previous steps provides (E1,F1,πe) that pass

verification. F1 is a valid encryption of the right partial return

code, but E1 is not an encryption of the right vote.
In order to complete the ballot, we can compute E2 in a

perfectly honest way, using whatever vote the voter asked for

(which will not be cast) and the true pCC1 = vkid . We then

compute πs in a completely honest way by observing that

E10 = (B2 ·Fc
10)

1/z = g(a2+rc)/z, so (a2 + rc)/z is the random

value used to produce E10. Finally, we compute πp in a perfectly

honest way as well, since it corresponds to a true statement

for which we have a witness: F1 and E2 do encrypt the same

value, which is the correct function of the intended vote.
All the proofs are valid, so E2 will be used to derive the return

codes corresponding to the vote intent v, which will then be

accepted by an honest voter, who will have her vote confirmed.

However, when E1 is decrypted (after being processed through

the mixnet), it will be declared invalid.
Summary of the problem: In the sVote system, neither the

protocol specification, nor the code, always includes the full

statement to be proven in the inputs to the hash function that

is used to generate the challenges in zero knowledge proofs.

Fixing the problem: All uses of the Fiat-Shamir transform

should include all data, including the statement to be proven,

as input to the hash. This includes all the base elements in the

proof of exponentiation.

Current status of the problem: An effort is being made

to remediate the problem in future versions.

IV. THE CLIENT-SIDE PROOFS ARE NOT SUFFICIENT: WHY

INDIVIDUAL VERIFIABILITY FAILS (2)

Even if the ZKPs were sound, individual verifiability would

still fail because the ZKPs used to prove consistency between

the vote codes and the vote are not sufficient.

In this section we show how this allows a cheating client

to submit a ballot that substitutes a voter’s choice but states a

corresponding pCC that matches the voter’s request. This passes

verification even if the NIZKPs are sound. Some other options

will have invalid pCCs, so it is not clear whether this would

result in a practical attack—the spec is ambiguous on whether

the valid codes would be retrieved in this case. Our report to

the Swiss Federal Chancellery on sVote 1.0 [4] includes a very

similar issue.

The main problem is that the exponentiation proof πe in the

vote generation proves that the product of the partial choice

codes has been correctly exponentiated—it does not prove that

each individual element has been properly exponentiated.

A. Generating a proof of ballot validity when the choice codes
do not match the vote

Suppose that there are two questions on the ballot, each with

two options, but one question is much more important than

the other. A cheating client will fabricate correct vote choice

codes for the important question, despite sending the incorrect

vote. The voter (if she checks carefully) will see that there are

invalid vote choice codes for the unimportant question, but will

receive the correct codes for the one she cares about.

Suppose pyes and pno are primes representing ‘yes’ and ‘no’

answers respectively to the important question (Question 1).

The ballot also contains a second question of less importance

(Question 2), with answers represented by p3 and p4.3

The cheating client can substitute its preferred vote for

Question 1 while building the correct partial choice code

(pCC1) for the voter’s expected code. The other partial choice

code—pCC1—is invalid. This construction, though invalid,

passes verificaion. The attacker transfers the code substitution

to Question 2 and hopes the voter doesn’t notice.

Suppose the voter wants to vote ‘yes’ for Question 1, but

the cheating client wants to vote ‘no’ and retrieve the voter’s

expected choice codes. Suppose the voter wants choice p3 for

Question 2.

The cheating client generates a random r and computes the

vote as

E1 = (gr,ELr
pk pno p3)

3In real Swiss referenda, there are also explicit “blank” codes, but they are
omitted here for simplicity. The attack works exactly the same if they are
included.

where ELr
pk is the election public key and pno and p3 are

primes used to represent vote choices. This correctly reflects

the voter’s choice for Question 2, but the client’s substitute for

Question 1.

It then generates the partial choice codes pCC1 = pkid
yes and

pCC2 = (pno p3/pyes)
kid where kid is a secret specific to that

card/voter (spec 5.4.1 (2)). Note that the partial choice code

for Question 1 reflects the voter’s choice, not the actual vote.

The partial choice code for Question 2 is not valid.

It generates E2 honestly from pCC1 and pCC2.

E2 = (gr′ ,(pk(1)CCR)
r′ ·pCC1,(pk(2)CCR)

r′ ·pCC2)

It generates the zero knowledge proofs entirely honestly,

because all the facts they are claiming are true. To see why,

observe that it needs to prove that the product of partial choice

codes is properly exponentiated, not the individual codes.

Recall that Ẽ2 is Ẽ2 = (gr′ ,(pkCC1
pkCC2

)r′pCC1pCC2),
which it generates honestly from E2.

Similarly, the exponentiation F1 = (gr.kid ,ELr.kid (pno p3)
kid),

the result of exponentiating each element of E1 by kid .

The Schnorr proof proves that the client knows the encryption

used to generate E1, which it does.

The exponentiation proof proves that F1 is generated by

exponentiating each element of E1 to the private exponent

corresponding to the public key Kid = gkid , which it is.

The proof of plaintext equality proves that F1 encrypts the

same value, under EL, as Ẽ2, under the product public key

Πk
i=1pkCCi

, which in our example is simply pkCC1
pkCC2

. This

is true. The message represented by Ẽ2 is

pCC1pCC2 = pvcsk
yes (pno p3/pyes)

vcsk = (pno p3)
vcsk

which is exactly the plaintext of Eexp.

So this vote will pass verification even though the pCC1

does not match the vote. Now consider whether the first choice

code will be returned from the server side.

B. How will this be treated at the server side?

Vote validity will pass because all the ZKPs are valid. Now

consider what happens when the VVC attempts to retrieve the

choice code. Choice codes are stored in a codes mapping table

and retrieved in sequence. The first code will be successfully

retrieved because it is an entirely valid code (for a different

option from the one the client sent). The second code is not

valid. The specification does not say explicitly what should

happen when some, but not all, of the codes can be successfully

retrieved. That part of the spec is shown in Figure 1.

In practice this would probably fail at the server side without

collusion—the code for version 1.0 throws an exception and

refuses to return any of the codes. However, the spec should

be updated to ensure that a voter’s codes are returned only if

all choice codes are correctly retrieved.

Even if this last step defeats the attack, it doesn’t really solve

the fundamental problem, which is that the logical conjunction

of all the facts proved by the ZKPs does not imply that the

Fig. 1. Choice code return in the spec. It’s not clear whether the first code
is returned if subsequent lookups fail. Nor is it clear in Step 3 whether the
status is updated if any codes are correctly retrieved, or only if all are.

ballot is correctly formed. In particular, it does not imply that

the pre-choice-codes are consistent with the vote. This can

be corrected (at a significant cost to efficiency) by providing

separate proofs for each element (rather than the products).

More importantly, even if the spec is corrected, a cheating

VVC may simply ignore it and return the codes that can

be retrieved even if others cannot. This would require no

misbehaviour from the CCRs—see Step 4 of the code return in

Section II-B2. This attack is within the security model because

the server side is not supposed to be trusted.

Although a misleadingly comforting code can be returned

with VVC collusion, it is much less clear that the manipulated

(’no’) vote can be inserted into the tally and pass audit. We

have not detailed the audit specification for this part of the

protocol in this paper, but we think it would detect (and refuse

to pass) if a vote was accepted when one of its partial choice

codes was invalid. However, there is nothing to stop the vote

being dropped—this leaves us with a voter who receives their

expected choice code, when the vote has not been included.

We also do not claim that the confirmation step (which we

have also not detailed here) could be successfully subverted.

In short, this seems to be a problem, though it is not clear that

it leads to a real attack.

a) Summary of the problem: The vote ZKPs are not

sufficient for vote validity. In particular, they rely on the product

of the codes not the individual codes. This results in a practical

attack if some codes are returned to the voter despite others

being irretrievable, which might happen accidentally (the spec

is vague) or deliberately (server-side collusion).

b) Fixing the problem: One possible fix is to produce

separate ZKPs for each element. Alternatively, it might be

possible to prove that the product proof is sufficient if the

server-side can provably only return codes if all the codes

are correctly retrieved. However, this latter approach seems

difficult in the presence of possibly misbehaving servers.

c) Current status of the problem: It is not entirely agreed

that this is a problem, since the voter does receive a wrong

code (or no code at all) for at least some choices, though she

receives the expected code for the choice that was manipulated.

We believe the spec will be updated to specify that the VVC

should return codes only if they are all retrieved, though this

does not address the problem of a colluding VVC.

V. INDIVIDUAL VERIFIABILITY: RETURNING THE RIGHT

CHOICE CODES FOR A MANIPULATED VOTE WITH SERVER

COLLUSION

In this section we show how a cheating client, in collusion

with a cheating Vote Verification Context (VVC), can manipu-

late the vote but retrieve all the voter’s expected choice codes.

This will pass verification and show the voter her expected

choice codes even though the vote is chosen by the client.

The attack relies on maliciously generated parameters for

representing the voting options, a reasonable assumption given

the weaknesses that were identified in practice in version 1.0 [3].

Although patching that gap thwarts the attack described here,

it does not really solve the fundamental problem, which is

that the code-return process (Section II-B2) is meant to be

a verifiable distributed computation among 5 parties, with

detectable misbehaviour if any subset of the CCRs collude, but

there is no proof that this property holds and, indeed, it does not

hold in its current form. There may be other exploitable failures

even if the system is patched to thwart this particular attack.

For example, although the specification document requires the

VVC to verify some zero knowledge proofs that the CCRs

generate, the audit document [12] does not require the auditor

to verify them again. There may be other attacks in which

a cheating VVC colludes with a CCR to allow the wrong

computation even though the ZKPs do not verify.

We require only a cheating VVC colluding with a client—all

the CCRs can be honest. However, the VVC must know some-

thing about maliciously-generated voting parameters. In this

example, assume that it knows a,b such that pa
yes = pb

no mod p.

Easily-computed example parameters are in Appendix B1.

Assume that a voter would like to submit a yes vote. The

voting client cheats and computes a no vote, that is, E1 =

(gr,ELr pno), E2 = (gr′ ,pk(1)CCR)
r′ · pkid

no), together with all the

expected ZKPs, which can be honestly computed based on E1

and E2 since they are consistent.

A. Faking correct choice return code generation

1) The cheat: The cheating VVC follows the choice-code

generation protocol (Section II) almost perfectly, until it needs

to compute the pre-Choice Return Code. It is supposed to be

generated as

pCid
1 = pkid

no .

If VVC uses this code, it will obtain the return code for

the no choice, and an honest and diligent voter will notice

that this code is wrong. However, VVC can also compute

(pk
no)

b/a = (pb/a
no)k = pk

yes, which is the pre-Choice return code

from which it can derive the return code for the yes choice.

From this observation, we see that, if the group parameters

are selected in a malicious way, then a cheating voting client

and a cheating voting server (VVC) can collude to modify a

voter’s choice in a way that is completely undetectable. Indeed,

the voter receives the codes that she expects to see, the votes

that are transmitted and tallied are perfectly valid, all the ZK

proofs are valid, and all the decryption operations lead to

plausible values.

B. Does it pass verification?

We have not detailed the audit specification for this part of

the election, but it is available in [12], Section 8.5. The audit

process will pass because the multiplication that the auditor

does compute in Steps 4 and 5 will work perfectly to retrieve

pk
yes from the codes table. The audit specifies that the auditor

must check that the value is “a valid entry of the mapping

table,” but it has no way of knowing which value was sent

back to the voter.

Summary of the problem: The underlying problem is that

the MPC protocol to retrieve the choice codes uses five parties

but is not secure against misbehaviour by one. This example

shows that maliciously-generated voting parameters can be used

by a malicious VVC, colluding only with a client, to return

a correct choice code for a vote that was manipulated. The

voter would receive exactly the expected codes, and verification

would pass.

Fixing the problem: This specific example can be solved

by provably-correct voting parameter generation. However, is

much more difficult to guaranteeing security of the multiparty

ballot processing protocol, in the presence of a dishonest VVC

and up to three dishonest CCRs.

Current status of the problem: We believe that future

versions will prove that the voting parameters have been

properly generated, thus preventing the specific attack described

here. We are not aware of any changes to the multiparty vote

processing protocol. There may be other attacks that exploit it

in a different way.

VI. PICKING ELECTION PUBLIC PARAMETERS: THE USE OF

TRAPDOOR COMMITMENTS IN BAYER-GROTH PROOFS AND

WHY THE SHUFFLE PROOF CAN BE FAKED

We now turn our attention to what happens when votes are

received by the mix servers, after they have been processed as

described in Section II-B2. At this point in the sVote process,

a list of accepted encrypted votes is available. Auditors have to

check whether those votes are properly shuffled and decrypted

to produce the announced election outcome.

There are four servers called CCM j for j = 1, . . .4. In order

to achieve universal verifiability, each one is supposed to prove

that the set of input votes it received correspond exactly to

the differently-encrypted votes it output—this is called a proof

of shuffle. (They also perform partial decryptions which they

must prove correct—see Section VII.)

These proofs can be complicated because they need to protect

voter privacy. However, their trust assumptions are simple: it

should not be possible for any collusion of authorities, whether

those who hold the decryption keys, those who write the

software, or those who mix the votes, to provide a proof

transcript that passes verification but alters votes.

A. Overview of this section: faking the shuffle proof

We show that the SwissPost-Scytl mixnet specification and

code does not meet the assumptions of a sound shuffle proof.

The problem derives from the use of a trapdoor commitment

scheme in the shuffle proof—if a malicious authority knows the

trapdoors for the cryptographic commitments, it can provide

an apparently-valid proof, which passes verification, while

actually having manipulated votes. There is no modification

of the audit process that would make it possible to detect if

a manipulation happened. Instead, the key generation process

for the commitment scheme should be modified in such a way

that it offers evidence that no trapdoor has been produced,

and the audit process should include the verification of this

new evidence. The same point was made independently by

Haenni [13].

We give two examples of how knowledge of the commitment

trapdoors could be used to provide a perfectly-verifying

transcript while actually manipulating votes.

The first example allows the first mix to use the trapdoors

to substitute votes for which it knows the randomness used to

generate the encrypted vote. While this requires some violation

of privacy, it is consistent with the requirements of the system,

which state that an attacker shall not be able to change a

vote even if voting clients are compromised [10], and such

a compromise could violate privacy. (We believe that the

assumption that voting clients may be compromised is sound

too: the voting system cannot do anything to guarantee that

the computer of the voter does not contain any malware.)

The second example allows the last mix to use the same

trapdoors to modify votes and does not require any data leakage

from the client, but has some constraints on the candidates

for which votes could be added or removed and some extra

assumptions about corrupt parameter generation. If, for some

reason, these constraints are not satisfied, then the same strategy

can still be used to render some chosen votes invalid.

B. The soundness of the shuffle proof

The Scytl-Swisspost mixnet uses a provable shuffle due

to Bayer and Groth [14]. We describe here an important

implementation detail that allows the forging of apparently-

verifying Bayer-Groth proofs. It is not a fault in the B-G proof

mechanism, but rather a misalignment of its assumptions with

the context that sVote uses it in.

The issue concerns the soundness of the commitments. A

core security requirement of commitment schemes is that they

be binding: once someone has committed to a particular value,

they can open the commitment only to that value.

The Bayer-Groth proof uses a generalisation of Pedersen

commitments with multiple generators H,G1,G2, . . .Gn. They

describe the scheme as “computationally binding under the

discrete logarithm assumption,” (p.5). This phrasing is slightly

confusing to the naive reader—it would be clearer to say

that the scheme is a trapdoor commitment scheme. Trapdoor

commitment schemes have various uses in cryptography (see

[15] for an excellent survey), because they are binding only

on the assumption that certain secrets (the “trapdoors”) are not

know to the committer.

The crucial point for the shuffle proof is to guarantee that no

one can learn the discrete logarithm of any generator H or Gi
to base G j (or of any non-trivial product of other generators). If

someone knows the discrete log of Giw.r.tG j, they can create

a commitment that they can open in multiple ways.

The system should prove, and the verifiers should check,

that the generators are selected properly, i.e., with no way for

anyone to learn a trapdoor except by computing discrete logs.

In the Scytl-Swisspost code, the commitment parameters are

just randomly generated without a proof of how they arose.

Indeed, each mixer generates its own commitment parameters

as shown in Figure 2.

The implementation of getVectorRandomElement
gathers random group elements without proving

where they came from. Even more worryingly,

getVectorRandomElement calls getRandomElement,

which proceeds as shown in Figure 3—it simply generates

a random exponent and raises g to that value. This

randomExponent is precisely the trapdoor that is needed

to break the binding property of the commitment scheme.

As a result, the binding property completely relies on the

expectation that randomExponent is properly erased from

the memory. These commitment parameters are eventually

used to build the shuffle proof.

In summary: the implementation does not provide a proof,

and the verifier cannot check, that the important assumption

of discrete log hardness made by Bayer and Groth is valid

here. It is possible for a malicious authority to generate the

perfectly random G1,G2, . . . in a way that gives it a trapdoor

that falsifies an assumption that is central to the security of the

Bayer-Groth mixnet construction.

public CommitmentParams(final ZpSubgroup group, final int n) {
this.group = group;
this.h = GroupTools.getRandomElement(group);
this.commitmentlength = n;
this.g = GroupTools.getVectorRandomElement(group, this.commitmentlength);

}

Fig. 2. Code for generating commitment parameters.

Exponent randomExponent = ExponentTools.getRandomExponent(group.getQ());
return group.getGenerator().exponentiate(randomExponent);

Fig. 3. Code for generating a random group element. Note that the exponent is explicitly used in its computation, so the discrete log of the output is known.

We will show how this can be used to produce a proof of a

shuffle that passes verification but actually manipulates votes.

1) Details about the commitment scheme: The commitment

scheme works over a group G of prime order q. The authority

is supposed to choose n + 1 commitment parameters ck =
H,G1,G2, . . . ,Gn at random from G. To commit to n values

a1,a2, . . . ,an, it chooses a random exponent r and computes

comck(�a;r) = HrΠn
i=1Gai

i .

Commitment opening consists simply of reporting �a and r.

The binding property of the commitment scheme depends on

the hardness of computing discrete logs in the group. It’s quite

obvious that this assumption is necessary. For example, suppose

that a cheating authority generates commitment parameters

ck = H,He1 ,He2 . . . ,Hen for some H. That is, Gi = Hei for i =
1..n. Then it can open commitments arbitrarily. A commitment

comck(�a;r) can be opened as comck(�b;r′) by setting

r′ = r+
n

∑
i=1

ei(ai −bi) (1)

because comck(�a;r) = HrΠn
i=1Gai

i
= HrΠn

i=1Haiei

= Hr+∑n
i=1(ai−bi)ei Πn

i=1Hbiei

= Hr′Πn
i=1Gbi

i
= comck(�b;r′).

Details of how to leverage this into a complete false shuffle

proof are contained in Appendix A.

C. Discussion

Ease of exploiting the problem: The first attack requires

knowing the randomness used to generate the vote ciphertexts

that will be manipulated. There are several ways this could

be achieved. For example, an attacker could compromise the

clients used for voting. Weak randomness generation (such

as that which affected the Norwegian e-voting system) would

allow the attack to be performed without explicit collusion.

The second attack does not require any extra information at

all, though it does rely on the election parameters having been

set up in a particular way. An easily-computed example set of

trapdoored parameters is in Appendix B.

How can there be a trapdoor when the system has been
formally proven secure?: Any formal proof of correctness for

any system makes some assumptions that become axioms in

the formal proof. Scytl’s proof of security [10] simply models

the mixnet as sound, based on an informal interpretation of

Bayer and Groth’s security proof. It does not model the proper

generation of commitment parameters. We do not see any

reason to believe there is an error in Scytl’s proof, but when

the axioms are mistaken the conclusions are not valid.

Source of the problem: Nothing in our analysis suggests

that this problem was introduced deliberately. It is entirely

consistent with a naive implementation of a complex cryp-

tographic protocol by well-intentioned people who lacked

a full understanding of its security assumptions and other

important details. Of course, if someone did want to introduce

an opportunity for manipulation, the best method would be one

that could be explained away as an accident if it was found.

We simply do not see any evidence either way.

Summary of the problem: This mixnet has a trapdoor—a

malicious administrator or software provider for the mix could

manipulate votes but produce a proof transcript that passes

verification. Thus complete verifiability fails.

Fixing the problem: The issue needs to be corrected

by ensuring that the commitment parameters are generated

in a way that prevents any entity from knowing the discrete

logs—concrete suggestions are contained in Section VIII. Every

verifier then needs to check the generation of the commitment

parameters as well as the rest of the proof transcript.

Current status of the problem: We understand that

SwissPost and Scytl have corrected the issue by generating

the commitment parameters according to NIST FIPS 186-4,

Appendix 2.3. Although we have not seen the implementation,

we consider this approach to be appropriate for generating the

commitment parameters. However, generating the commitment

parameters properly might not completely resolve the problem.

The FIPS standard should also be used to generate the group

parameters p,q and g. This issue and the correction require

further public scrutiny.

VII. UNIVERSAL VERIFIABILITY FAILURES FROM THE

WEAK FIAT-SHAMIR TRANSFORM

In this section, we show that the error in the implementation

of the Fiat-Shamir heuristic (already described in Section III)

allows a cheating authority to produce a proof of proper

decryption, which passes verification, but declares something

other than the true plaintext.

The proof of proper decryption of a ciphertext (C0,C1) does

not hash C0. This allows a cheating prover to compute a valid

proof, then choose a statement as a function of that proof,

which breaks the soundness of the proof.

Just like the previous section, this voids the arguments

that the sVote audit offers complete verifiability: since the

verification procedure is based on an assumption that we show

to be false, no conclusion can be made from its successful

completion.

In order to demonstrate one possible impact of the lack of

soundness of this decryption proof, we exhibit an exploit in

which a malicious authority (e.g., the CCM1 of the system)

modifies selected votes during the (partial) decryption proce-

dure and forges decryption proofs that are indistinguishable

from valid ones, and would therefore pass verification. This

specific exploit has two limitations, but we do not rule out that

there are other and possibly more dangerous ways of exploiting

the same weakness.

1) In order to fake the decryption proof and also complete a

valid proof of shuffle, the cheating CCM needs to know

the randomness used to encrypt the votes that it wants to

modify. This can be accomplished by corrupting a voting

client, or by a poor random number generator.

2) The cheating authority cannot declare an arbitrary false

plaintext while also making the shuffle proof work. But it

can, for any ciphertext, prove that it decrypts to something

other than the truth. The exploit produces an output vote

that will probably be nonsense rather than a valid vote.4

This exploit could then be used to political advantage to

nullify only those votes with which the cheater disagreed.

We have provided two examples of decryption proofs

that pass verification but change the plaintext. We have not

implemented the inclusion of the fake decryption proof into

the sVote mixing and decryption sequence (Section VII-B3).

A. Is this detectable or attributable to the cheating prover?

Because of these invalid votes, this exploit will probably

leave evidence that something went wrong. According to the

sVote audit specification [12, Section 5, Step 2, p.57], the

invalid votes are stored in a auditableVotes.csv file,

and the audit verifies that all the ballots included in that file are

invalid indeed. So, the ballots for which fake decryption proofs

have been produced will be written in that file and, according

to the audit specification, the verification will formally pass.

If someone wishes to push investigations further, one may

wonder how invalid ballots were accepted in the ballot box and

4Note that we are not sure whether this is also true for other elections, such
as New South Wales, that express votes differently from Switzerland.

tallied. The sVote spec [7, p.117] states, “Usually these errors

should not happen since the value encrypted by the voting

client is the product of valid prime numbers included in the

ballot.” It is not clear what “usually” means, or what would

be inferred if these errors happened.

For regular (i.e., non write-in) votes, it appears that this

should just not happen under the proposed trust model. The

zero knowledge proofs of valid vote construction [7, Section

5.4.1], produced in the voting client, are expected to prove some

internal consistency in the ballots (even if they do not include a

proof that the vote is the product of the prime numbers it should

be). However, there is another step [7, Section 5.4.4, Step 1] in

which the Vote Verification Context derives the Choice Return

Codes, and that step would normally fail if the vote is not the

product of the expected primes. As a result, it seems that our

exploit would put the system in an “impossible state”, which

would make it difficult to define a meaningful investigation

process. If the possibility that the cryptographic algorithms

are broken is considered (but possibly without really knowing

which ones), then it might eventually be possible to identify the

cheater by requiring the CCM’s to release their secret key. It is

certainly unclear how to run such an exceptional investigation

without breaking the privacy of some votes.

For write-in votes, the individual verifiability mechanisms do

not offer any guarantee that the submitted write-ins make any

sense (this would be complicated, since these can essentially be

anything). So, our exploit would offer a way to transform valid

write-ins into senseless votes, and such a situation would be

consistent with a voter willing to express a senseless write-in,

or with a corrupted voting client.

Formally, verification would pass. Informally, it would be

apparent there was a problem. But, if the weakness that we

identified in the Fiat-Shamir transform were not known, the

path towards a proper diagnosis of this problem would be quite

difficult to execute, in particular without violating the privacy

of some votes.

B. Producing a false decryption proof

Remember that an ElGamal encryption of message m with

public key pk is a pair (C0,C1) = (gr,m(pk)r). A proof of

proper decryption—that the ciphertext (C0,C1) decrypts to

message m—can be constructed by anyone who knows the

secret key x s.t. pk = gx mod p. It consists of a proof that

dlogg pk = dlogC0
(C′

1), where C′
1 =C1/m. (2)

1) The Chaum-Pedersen proof: sVote’s Decryption proof

[7, Section 9.1.8] is very similar to the exponentiation proof

described in Section III-A3. It uses a well-known proof method

due to Chaum and Pedersen [11] to prove Equation 2.

Like the exponentiation proof, the Fiat Shamir heuristic is

implemented incorrectly, with hash inputs that do not include

C0 (or g). Thus a cheating prover can choose C0 after generating

the rest of the proof. This allows it to produce a proof (c,z)
that passes verification as a decryption proof that (g, pk,C0,C′

1)
satisfy Equation 2 although (C0,C′

1) actually decrypts to a

random value (not 1). The details are very similar to the

exponentiation proof forgery, and are contained in Appendix C.

2) Transforming to a set of fake decryption proofs that pass
verification: A decryption proof [7, Section 9.1.8] proceeds by

stating a ciphertext (C0,C1), declaring a plaintext P1 and then

performing a Chaum-Pedersen proof on (g, pk,C0,C1/P1). But

there is nothing that forces a malicious prover to do things in

that order.

For instance, we can start from a cheating Chaum-Pedersen

proof as above and use it to produce a set of cheating

decryption proof transcripts: given a forged proof (c,z) and the

corresponding pair (C0,C′
1), simply set C1 =C′

1P and declare

it to be a valid encryption of P. Whether this is true or not,

the fake proof will support it.

3) Incorporating a fake decryption proof into the sVote
mixing and decryption sequence: An attacker can exploit the

flaw in the Chaum-Pedersen protocol described above, because

sVote has a very specific feature: each mixer performs a shuffle

and a (partial) decryption of the output of that shuffle. This

means that a mixer can proceed exactly as above: compute a

fake decryption proof and a matching ciphertext (C0,C′
1), then

define its shuffle in such a way that a ciphertext with the right

C0 comes out of it.

More precisely, suppose that CCM1 has, as part of its list of

input ciphertexts for mixing and partial decryption, a ciphertext

(D0,D1). It needs to include this ciphertext in its shuffle and

output a partially decrypted version of it, together with proofs

that these operations were performed correctly. But it wishes

to modify the contents of that ciphertext, so that it becomes

invalid and will not be taken into account in the tally. It will

do this by declaring a false decryption and proving it to be

correct using the cheating proof described above.

First, it produces a fake decryption proof and a matching

ciphertext (c,z,C0,C′
1), as described in Appendix C.

Now, in order to make it possible to produce a proof of

shuffle (assuming that this proof is sound), it needs to define

C1 such that the pair (C0,C1) is actually a re-encryption of

(D0,D1). To this purpose, it computes E0 =C0/D0 and E1 =
Ex

0. Now (E0,E1) is an encryption of 1 such that (D0,D1) ·
(E0,E1) = (C0,D1E1). So, it can simply set C1 = D1E1, which

is a true re-encryption of the vote. Then setting P to C1/C′
1

makes (c,z) a valid proof that (C0,C1) decrypts to P, though

this is (almost certainly) not true.

One last difficulty is to make the proof of shuffle work.

The ciphertext (C0,C1) is a re-encryption of (D0,D1), so the

shuffle is still valid. However, the proof requires knowing the

randomness used in the re-encryption factor, which CCM1 does

not know, unless it has the discrete log of D0 in base g. Indeed,

if D0 = gr, then E0 = g(t+sc)/z−r, and the reencryption factor

needed to complete the proof of shuffle is t+sc
z − r.

This would require information leakage from the voting

client to the server (CCM1). This does not seem an excessive

requirement, when both are implemented by the same corpo-

ration and administered by the same authority. It is certainly

inconsistent with the claim of complete verifiability that such

information leakage should allow electoral manipulation.

C. On the possibility to cheat and produce valid ballots.

In the attack described here, assuming the attacker must also

generate a true shuffle proof, the attacker gets an effectively

random plaintext. The attack would of course be much more

stealthy if that random plaintext corresponded to the encoding

of a valid vote. In the Swiss system, this seems highly unlikely,

since only a negligible fraction of plaintexts are valid votes,

and the resulting vote will just be invalid.

In other places, it depends critically on the method for

encoding the votes.

Summary of the problem: Suppose that the first mixer

(CCM1) is corrupted and that he can obtain the randomness

used for encryption by some voters. Then this mixer can

produce a valid shuffle proof and a fake decryption proof for

the ciphertexts produced by these voters, so that their votes

become invalid. If this mixer knows the randomness, he will of

course focus on invalidating votes for candidates that he does

not like.

Fixing the problem: Same as Section III. Hash all relevant

data when using the Fiat-Shamir heuristic.

Current status of the problem: An effort is being made

to remediate the problem in future versions.

VIII. HOW DO OTHERS PICK THEIR PUBLIC PARAMETERS?

HOW SHOULD THEY?

In this section, we examine some of the ways independent

generators—on which the commitment schemes rely—are

generated in practice. We discuss the common approaches taken

and highlight critical problems than can, and have, occurred.

One key issue that seems to have resulted in the problems

we describe is the definition of the word “independent.”

When independent generators are required for the commitment

scheme, the term means that the discrete log relation between

them is unknown. In contrast, when discussing probability,

the word independent means that probability does not change

depending on the outcome of the others.

A. Common methods

There are two methods which are commonly used to generate

independent generators. The first is contained in Algorithm

A.2.3 Verifiable Canonical Generation of the Generator g from

NIST fips186-4 [16] and is reproduced here as Algortihm 1.

The second is Handbook of Applied Cryptography, Algorithm

4.80 and Note 4.81 [17] and as Algorithm 2 below.

The first method was specifically designed to find indepen-

dent generators in Schnorr groups. The second is designed

to find a single generator for a cyclic group. Both algorithms

have commonly been adapted to other kinds of groups. In many

libraries neither method is explicitly cited but the method used

is nevertheless nearly identical to one of them.

The two algorithms put different demands on their source of

randomness. In the NIST standard (Algorithm 1) a sufficiently

controlled domain parameter seed, for instance the name of

the election, combined with a hash function with sufficient

domain would seem acceptable. In Algorithm 2, the randomness

Algorithm 1: Algorithm A.2.3 Verifiable Canonical

Generation of the Generator g

Data: p, q for a Schnorr group of order q in the field

Fp of order p = kq+1

domain parameter seed
index
Result: status, g

1 if (index is incorrect), then return INVALID
2 N = len(q)

3 e = (p−1)/q
4 count = 0

5 count = count +1

6 if (count = 0), then return INVALID
7 U = domain parameter seed ‖ “ggen′′ ‖ index ‖

count
8 W = Hash(U)

9 g = W e mod p
10 if (g < 2), then go to step 5

11 Return VALID and the value of g

Algorithm 2: Handbook of Applied Cryptography,

Algorithm 4.80

Data: a cyclic group G of order n, and the prime

factorisation n = pe1
1 pe2

2 · · · pek
k .

Result: a generator α of G.

1 Choose a random element α in G.

2 for i from 1 to k do the following: do
3 Compute b ← αn/pi .

4 If b = 1 then go to step 1.

5 Return(α).

used in Step 1 must be chosen in a verifiable manner. Failing

to check this risks a trapdoor like that described in Section VI.

In both these cases the key point is the way in which the

candidate, for generator, element is mapped into the group.

It does not suffice for the candidates to be chosen randomly

(uniformly and independently) but rather they are chosen so

that no additional information is revealed about the discrete

log of the element.

B. Potential problems with these methods

In the first method, knowledge of process reveals no more

information than just seeing the random generators, at least up

to some assumptions on the hash function. This is true because

the Tonelli-Shanks algorithm can easily be used to compute w
from the generator g. In the second method, the way in which

the random element is chosen is undefined; therefore, so is the

security of the algorithm when being used to find independent

generators.

C. In Practice

We now detail several real cases where this has and has not

occurred. We again stress that in no case did the developer of

the library not understand the issues involved. However, direct

use of some of the libraries could, and likely would, result in

an insecure e-voting scheme.

1) UniCrypt: The UniCrypt cryptographical framework5 by

the Bern University of Applied Sciences (BFH), Research

Institute for Security in the Information Society (RISIS), E-

Voting Group (EVG) is a framework for implementing e-voting

that is or was used/trialed in a number of companies and

solutions.6

It implements both of the methods described above but

primarily the second. The exact way in which the random

element is generated differs based on the group in question

and this makes all the difference.

Group Method Security

Sub-group of order m
of a cyclic group of

integers Z
∗
n

k ←$
Z
∗
n,k

n/m Secure

Elliptic curve of or-

der q
k ←$ (0,q−1),gk Broken

In discussion with the authors of UniCrypt we discovered that

the EC extension was a student project and not supported in

the same way as the Schnorr groups; nevertheless, this is not

obvious to us from looking at library and we suspect would

not be obvious to others. To the best of our knowledge, all of

the systems built on top of UniCrypt (which have been used

in real elections) were instantiated using the secure version.

However, in most cases a simple modification of about three

lines would switch the system to the insecure variant.

2) Stadium: The Stadium project, and its descendants, have

two implementations of Bayer-Groth mixnets in C++, one for

Schnorr groups7 and one for elliptic curves8. Both of these use

the naive method described above and hence would invalidate

the verifiability claim of the e-voting system in which they were

used. This in no way undermines the value of the prototype

but highlights the danger of using them without due care.

3) GRNET-Fauzi et al: The Zeus project [18] has imple-

mented a prototype of the Fauzi et al mixnet [19].910 Unlike

the other mixnets mentioned here, the secure generation of

the common reference string for Fauzi et al. is non-trivial and

multiparty computation is probably required. These libraries

do not securely implement the common reference string

generation.

4) CHVote prototype (2.0): The CHVote prototype 2.0

correctly implements and uses a method to create independent

generators.

5) Verificatum: Verificatum provides a good example of

how to securely generate independent generators for elliptic

curves.11 We present a slightly simplified version here.

5https://github.com/bfh-evg/unicrypt
6We gathered this information on company usage by searching GitHub.
7https://github.com/derbear/verifiable-shuffle
8https://github.com/nirvantyagi/stadium/tree/master/groth
9https://github.com/grnet/ac16
10https://github.com/StefanosChaliasos/gsoc17module-zeus
11https://github.com/verificatum/verificatum-vcr

Algorithm 3: Verificatum Core Routines - randomEle-

ment (simplified)

Data: a cyclic elliptic curve group G of order q, over a

finite field Zp of order p. The curve is defined

by the equation y2 = x3 +ax+b
Result: an element α of G.

1 for i from 0 to ∞ do the following: do
2 Choose a random element β in Zp in a verifiable

way.

3 if (β 3 +aβ +b)
p−1

2 = 1 then
4 return (β ,

√
β 3 +aβ +b)

D. Conclusion and Recommendations

Given that for most cases in e-voting it is possible to

securely—and verifiably—generate independent generators

without relying on multiparty computation, we recommend

that this and only this should be done. We are impressed by

the understanding and care taken by those researchers imple-

menting e-voting libraries but concerned by the dangers still

present by others using their libraries without understanding.

IX. DISCUSSION/CONCLUSION

We have shown numerous serious issues with the complete

election verifiability process of the sVote 2.1 protocol, which

open the way for undetectable electoral fraud in the Scytl-

SwissPost system. Fake proofs are possible at almost every

step, from the client proving that the vote is valid, to the return

of choice codes, to the mixing and decryption of the votes.

In all cases, formally, verification would pass, though in some

cases it would probably be observed that something unusual

occurred (such as the presence of invalid votes).

We are a small team of researchers investigating this code

base for the first time. We inspected only a small fraction of it.

The code is very complex and difficult to understand. There is

no reason to think that correcting all the known flaws will be

easy, or that it will produce a secure system with no further

opportunities for undetectable electoral fraud.

We are now told12 that code for generating commitment

parameters properly was already present. But the code is so

convoluted that (as far as we know) none of the official audits

noticed that it was not actually being used to generate the

parameters (Section VI). Besides, the specification describes

the insecure process, and the verification specification does not

mention verifying proper generation.

As well as the direct impact of the the attacks, our analysis

of the ZKPs shows that they do not offer the security guar-

antees that are assumed in the “complete verifiability security

proof” [10]. Therefore, successfully passing the current sVote

12https://www.scytl.com/en/scytl-responds-misinterpretations-related-swiss-\
posts-media-release/

audit process [12] cannot be used to draw any conclusion

regarding the correctness of the election outcome.

This does not mean that formal proofs are useless—they are

important for clarifying assumptions and security claims, and

they provide an argument (which can be checked) for why the

system should be trusted. However, proofs themselves can be

mistaken or insufficient. They should be required, but they are

a part of the scrutiny process not a substitute for open scrutiny.

We believe that this study confirms the importance for any

democracy of enforcing openness such as that mandated by

the Swiss Federal Ordinance 161.116. The source code for

the system must be “easily obtainable, free of charge, on the

internet. [...] Anyone is entitled to examine, modify, compile

and execute the source code for ideational purposes, and to

write and publish studies thereon.” This enforces a process

that increases the likelihood that you hear the truth about its

security properties before you vote over the Internet.

It is unfortunate to make a code base (like sVote 2.1) available

for public examination and then have to withdraw it because

its failings have become evident, but it is much worse to run a

flawed system (like sVote 1.0 and iVote) in a binding election

and learn afterwards that it did not meet its security goals. The

failures that have led to decreased confidence in Swiss e-voting

should substantially increase doubt in other e-voting systems,

not only those by the same vendor, but any that have not had

an extensive period of open public scrutiny.

Thanks to the Swiss process, flaws that we publicly described

were found to be present in other Scytl code being used for a

running election in New South Wales (NSW), Australia. That

code was not available for open review and discussion (though

it now is). Without Switzerland’s mandated transparency,

opportunities for undetectable electoral fraud in NSW would

probably have gone unnoticed through a running election.

Scytl claims to sell Internet voting systems in numerous

other democracies,13 including Canada, Brazil, Mexico, India

and the UK, so quite possibly these same errors are present

in other systems whose administrators have been even less

forthcoming than those in NSW.

As applications of zero knowledge and MPC go mainstream,

we can expect to see more proprietary systems in which non-

experts attempt to guarantee sophisticated properties without

detailed security proofs or open review. We hope this work

can help customers assess what does, and does not, constitute

genuine verifiable computation. There is nothing gained by

using a proven-secure component if its assumptions are not

met in the context in which it is used. Nor is there any advantage

to sound ZKPs if they do not actually prove what is needed in

the rest of the protocol.

The aim of verifiable election software is verifiable election

outcomes, not proofs that pass. If the system itself does not

come with meaningful evidence that its verification procedure

is sound, then an apparently-successful verification implies

nothing about the integrity of the election result.

13https://www.scytl.com/en/customers/

REFERENCES

[1] U. M. Maurer, “Unifying zero-knowledge proofs of knowledge,” in
Progress in Cryptology - AFRICACRYPT 2009, ser. Lecture Notes in
Computer Science, vol. 5580. Springer, 2009, pp. 272–286.

[2] D. Bernhard, O. Pereira, and B. Warinschi, “How Not to Prove Yourself:
Pitfalls of the Fiat-Shamir Heuristic and Applications to Helios,” in
ASIACRYPT 2012, ser. Lecture Notes in Computer Science, X. Wang
and K. Sako, Eds., vol. 7658. Springer, 12 2012, pp. 626–643.

[3] P. Locher, R. Haenni, and R. E. Koenig, “Analysis of the cryptographic
implementation of the swiss post voting protocol,” https://www.bk.admin.
ch/bk/en/home/politische-rechte/e-voting.html, Jul. 2019.

[4] O. Pereira and V. Teague, “Report on the swisspost-scytl e-voting
system, trusted-server version,” https://www.bk.admin.ch/bk/en/home/
politische-rechte/e-voting.html, Jul. 2019.

[5] J. Benaloh and M. J. Fischer, “A robust and verifiable cryptographically
secure election scheme (extended abstract),” in 26th Annual Symposium
on Foundations of Computer Science (FOCS 1985). IEEE, 1985, pp.
372–382.

[6] T. ElGamal, “A public key cryptosystem and a signature scheme based
on discrete logarithms,” IEEE Transactions on Information Theory, vol.
IT-31, no. 4, pp. 469–472, July 1985.

[7] Scytl, “Scytl sVote protocol specifications – software version 2.1 –
document version 5.1,” 2018.

[8] C.-P. Schnorr, “Efficient signature generation by smart cards,” Journal
of cryptology, vol. 4, no. 3, pp. 161–174, 1991.

[9] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to
identification and signature problems,” in Conference on the Theory and
Application of Cryptographic Techniques. Springer, 1986, pp. 186–194.

[10] Scytl, “Scytl svote – complete verifiability security proof report - software
version 2.1 - document 1.0,” https://www.post.ch/-/media/post/evoting/
dokumente/complete-verifiability-security-proof-report.pdf, 2018.

[11] D. Chaum and T. P. Pedersen, “Wallet databases with observers,” in
Advances in Cryptology - CRYPTO ’92. Springer, 1992, pp. 89–105.

[12] Scytl, “Scytl svote – audit of the process with control components -
software version 2.1 - document 3.1,” 2018.

[13] R. Haenni, “Swiss Post Public Intrusion Test: Undetectable attack
against vote integrity and secrecy,” https://e-voting.bfh.ch/app/download/
7833162361/PIT2.pdf?t=1552395691, Mar. 2019.

[14] S. Bayer and J. Groth, “Efficient zero-knowledge argument for correctness
of a shuffle,” in Advances in Cryptology - EUROCRYPT 2012. Springer,
2012, pp. 263–280.

[15] M. Fischlin, “Trapdoor commitment schemes and their applications.”
Ph.D. dissertation, Goethe-University of Frankfurt, 2001.

[16] P. FIPS, “186-4: Federal information processing standards publication.
digital signature standard (dss),” Information Technology Laboratory,
National Institute of Standards and Technology (NIST), Gaithersburg,
MD, pp. 20 899–8900, 2013.

[17] J. Katz, A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook
of applied cryptography. CRC press, 1996.

[18] G. Tsoukalas, K. Papadimitriou, P. Louridas, and P. Tsanakas,
“From helios to zeus,” in 2013 Electronic Voting Technology
Workshop / Workshop on Trustworthy Elections, EVT/WOTE ’13,
Washington, D.C., USA, August 12-13, 2013. USENIX Association,
2013. [Online]. Available: https://www.usenix.org/conference/evtwote13/
workshop-program/presentation/tsoukalas

[19] P. Fauzi, H. Lipmaa, and M. Zajac, “A shuffle argument secure in
the generic model,” in Advances in Cryptology - ASIACRYPT 2016
- 22nd International Conference on the Theory and Application of
Cryptology and Information Security, Hanoi, Vietnam, December 4-8,
2016, Proceedings, Part II, ser. Lecture Notes in Computer Science, J. H.
Cheon and T. Takagi, Eds., vol. 10032, 2016, pp. 841–872. [Online].
Available: https://doi.org/10.1007/978-3-662-53890-6 28

[20] R. Cramer, I. Damgård, and B. Schoenmakers, “Proofs of partial knowl-
edge and simplified design of witness hiding protocols,” in Advances in
Cryptology - CRYPTO ’94, ser. Lecture Notes in Computer Science, vol.
839. Springer, 1994, pp. 174–187.

X. ACKNOWLEDGEMENTS

Many thanks to Andrew Conway for tremendous help with

the code, and to Chris Culnane, Aleks Essex, Matt Green, Nadia

Heninger and Hovav Shacham for many valuable discussions.

Olivier Pereira is also grateful to the Belgian Fund for

Scientific Research (F.R.S.- FNRS) for its financial support

provided through the the SeVoTe project, and to the European

Union (EU) and the Walloon Region through the FEDER

project USERMedia (convention number 501907-379156).

Thomas Haines acknowledges the support of the Luxembourg

National Research Fund (FNR) and the Research Council of

Norway for the joint project SURCVS.

We would like to thank Swiss Post for the civilised way

they have received our analysis, and for running a public test

of the code. Although we were not willing to sign on to the

participation conditions, in practice the code did circulate quite

freely on the web. This is a good thing for Swiss democracy.

XI. A NOTE ON CODE AUTHENTICITY

We did not officially enrol for the Swiss Post researcher test.

We downloaded this codebase from an unofficial repository

and received confirmation of its authenticity from researchers

with access to the official codebase.

APPENDIX

A. Using trapdoored commitments to fake the shuffle proof

This section describes how an ability to open commitments

arbitrarily could be used to produce a shuffle proof that verifies

but is false.

1) Faking a proof for ciphertexts with known randomness:
Our demonstration shows how an attacker who knows the

trapdoor can manipulate any votes for which it learns the

randomness used to generate the vote ciphertext. This would

allow the first mixer, in collusion with voting clients, to manip-

ulate votes undetectably. A working demonstration transcript

is submitted together with this report. Here we explain how it

was generated.

We write the primes used to encode the messages as

q1,q2, The prover commits to applying permutation (shuf-

fle) π .

Suppose we have three input ciphertexts

C1 = Epk(M1,ρ ′
1),C2 = Epk(M2,ρ ′

2), C3 = Epk(M3,ρ ′
3)

with known messages M1,M2,M3 and randomness ρ ′
1,ρ

′
2,ρ

′
3,

and one input ciphertext C4 whose contents and randomness

are unknown.

The idea of the cheat is, for each prime qk, to accumulate

all the votes for qk, for which the attacker knows the contents

and randomness, into one π(i). The attacker can then substitute

all the other votes (for which it know the randomness) with

arbitrary votes of its own choice.

This attack succeeds with arbitrarily many known and

unknown votes, as long as the number of known votes is

larger than the number of candidates that received at least one

vote—the attacker can substitute the votes for which it knows

the randomness, and must honestly shuffle those for which it

does not know the randomness.

We illustrate with a small example. Suppose M1 = M2 = q1

and M3 = q2. M4 is unknown. The cheating prover will apply

the identity permutation (just for clarity here, this has no impact

on the attack) and set

C′
1 = Epk(1;ρ1)C1 = Epk(M1,ρ1 +ρ ′

1)
C′

2 = Epk(1;ρ2)C3 = Epk(M3,ρ2 +ρ ′
3)

C′
3 = Epk(1;ρ3)C3 = Epk(M3,ρ3 +ρ ′

3)
and C′

4 = Epk(1;ρ4)C4 = Epk(M4,ρ4 +ρ ′
4)

If C4 is an encryption of q4 (neither q1 nor q2), the substitution

of M3 for M2 in the second vote changes the winner: it used

to be q1; now it’s q2. The cheating prover knows M1,M2,M3

but not M4. It also knows ρ ′
i for i = 1,2,3 but not ρ ′

4.

The high-level protocol is described in Bayer & Groth p.8.

Input: m = 2,n = 2,N = 4,�C = {C1,C2,C3,C4}, �C′ as above;

permutation π . We will compute ρ carefully later.

Suppose the mix has generated the trapdoored commitment

key as in Section VI-B1. The cheating shuffler’s initial message

�cA is a (truthful) commitment to π . That is,

�cA = comck(�A1;r1),comck(�A2,r2),

where �A1 = (π(1),π(2)) and �A2 = (π(3),π(4)).
It then commits honestly to �B as

�cB = comck(�B1;s1),comck(�B2,s2),

where �B1 = (xπ(1),xπ(2)) and �B2 = (xπ(3),xπ(4)).
Now consider how the cheating shuffler responds to the

second challenge y,z and generates a convincing answer for

both parts. In the first part of the challenge, when it generates

answer 1 in response to y,z, it treats �cB as a commitment to xπ

and answers the product argument (Bayer & Groth Section 5)

honestly.

a) Cheating on the multi-exponentiation argument: In the

second part of the challenge, it generates a cheating permutation

πcheat, which isn’t actually a permutation, as follows:

πcheat(1) = x+ x2

πcheat(2) = 0

πcheat(3) = x3

πcheat(4) = x4.

The attacker then runs the multi-exponentiation argument

from Section 4 of BG exactly as given, except for the following

changes.

• It sets

ρ =−ρ1x− (ρ1 +ρ ′
1)x

2 + x2ρ ′
2 −ρ3x3 −ρ4x4. (3)

(See Appendix A2a for why this works.)

• It treats �cB = comck(�B1;s1),comck(�B2,s2) as a commit-

ment to

πcheat = ((x+ x2,0)(x3,x4)).
• It computes commitment openings �s for πcheat using

Equation 1 and the random values s1 and s2.

This produces a proof that passes verification, though the

election outcome has been changed. An example transcript,

which passess verification, is attached with this report.

2) Faking a proof for ciphertexts with unknown randomness:
As a second example, we exploit the trapdoor in the commit-

ment scheme to break the soundness of the proof of shuffle,

even in a situation in which we do not know the randomness

or the content of any vote.

In this case, the malicious party could be the last mixer.

This mixer indeed has the advantage of being able to perform

the final decryption step, which means that it may know the

content of the votes that it mixes before actually mixing them.

(It could also be the first mixnet if it has some other way of

learning the contents of the votes.)

We make the following assumption (many variants are

possible):

Suppose that the voting parameters are, again, maliciously

generated. In this case the mixer knows values a and d so that

vote options pyes and pno satisfy

2a = (pno/pyes)
d mod p

.

This is probably hard to generate for a given p, but it is

not hard to generate values of p, pyes and pno for which such

a and d are known. Several sets of complying parameters are

contained in Section B below.

This allows allows a cheating mixer to change a vote for

pyes into a vote for pno by multiplying by 2a/d .

For concreteness, suppose that we have a single-choice

election and that the last mixer receives input ciphertexts

C1 = Epk(M1,ρ ′
1),C2 = Epk(M2,ρ ′

2), C3 = Epk(M3,ρ ′
3), C4 =

Epk(M4,ρ ′
4) such that the cheater’s preferred candidate, repre-

sented by pno, does not win the election.

The last mixer can now perform the final decryption step

in order to identify which of these ciphertexts contain a vote

for pyes. It does not learn the randomness ρ ′
1,ρ

′
2,ρ

′
3,ρ

′
4. Again,

for simplicity, let us assume that the true result is unanimous:

the mixer finds out that everyone voted for pyes.

In order to manipulate the outcome, the mixer defines the

output ciphertexts as C′
i = Epk(2

a/d ,ρi)Ci. By the homomorphic

property of ElGamal, we have multiplied each encrypted vote

vote by pno/pyes. (For ease of exposition we use the identity

permutation on the list of ciphertexts, but any permutation is

possible.)

We play the Bayer-Groth shuffle perfectly honestly, ex-

cept for the multi-exponentiation argument. Indeed, that ar-

gument raises a difficulty because the statement equation

�C�x = Epk(1;ρ)�C′�b does not hold. Instead, the equation �C�x =

Epk(2
−(x+x2+x3+x4)a/d ;ρ)�C′�b holds, for ρ = −ρ1x − ρ2x2 −

ρ3x3−ρ4x4, which is known to the mixer. In order to make the

proof pass the verification despite this, we will use the trapdoor

of the commitments in the multi-exponentiation argument.

We follow the notation in Bayer & Groth, Section 4. In

the initial message, we cheat on the commitment cBm =
comck(bm,sm): instead of setting bm = sm = 0, we set bm =
−(x+ x2 + x3 + x4)a/d and use the trapdoors to compute sm
such that comck(bm;sm) = comck(0;0). This choice makes sure

that cBm = comck(0;0) and Em = �C�x, as required in the first

two steps of the proof verification steps.

All the other verification steps pass, as we did not break the

truthfulness of any of the underlying proofs.

a) Calculating ρ: This section shows why we get the

expression for ρ that we use above.

We needed to find ρ s.t.

�C�x = Epk(1;ρ)�C′�b

where �C are the input ciphertexts and �C′ are the output

ciphertexts. (Bayer-Groth p.8)

LHS = �C�x

= Π4
j=1Cx j

j

= Epk(qx+x2

1 qx3

2 qx4

4 ;∑4
i=1 xiρ ′

i)

RHS = Epk(1;ρ)�C′�b

= Epk(qx+x2

1 qx3

2 qx4

4 ;ρ +(ρ1 +ρ ′
1)(x+ x2)

+(ρ3 +ρ ′
3)x

3 +(ρ4 +ρ ′
4)x

4).
So ρ = −ρ1x− (ρ1 +ρ ′

1)x
2 + x2ρ ′

2 −ρ3x3 −ρ4x4.

Note ρ ′
4 is unknown but ρ ′

4x4 cancels out.

B. Trapdoored voting parameters

The following parameters are consistent with all the specified

rules of generation (except that the first is a little short), and also

satisfy 2a = (c/b)d mod p, as required by the second attack in

Section VI, in which we show that we can switch a valid vote

for one candidate into a valid vote for another.

a = 653, b = 107, c = 1097, d = 55,

p= 15441693973329384151125350995017654008023565817

91428284320345377390023004872648706499721969432402

05309469342226350935416403841627526252460636822182

64819087621368590176989254277369700622970467063224

44977229145304524184340274314622921879312772930704

99453123834777026998428423476982337655176255426398

664922523463.

This one is the expected length (2048 bits):

a = 1939, b = 149, c = 5297, d = 15,

p= 19722211808861961998510473803189009728961510664

62954597012950631665016587960284345553058864004164

22635674888062646812201053027045463289680822704943

58116782188791058782334971234980982393280439569631

97645598064743789156967497159791451972480058884224

88129789103747962429037124268598548043273104642724

26209417044887320406964517516088674160658753919846

53276983500291704129663009471242431039022666033016

35001453648728462242647769934145440177681915881404

98688094713424617499173689382179303046730867743281

53992533297229762632178533569405440166918849064735

82573668425175946824944015854229827903777022100947

69635988172380985519.

1) Trapdoored election parameters for the attack in Sec-
tion V: The following parameters were generated in a few hours

on a standard laptop (along with many other similar parameter

choices). They are such that v, w, p and q=(p−1)/2 are prime,

2, v, and w are quadratic residues modulo p, va = wb mod p,

and |p|= 2046.

v = 11,w = 53,a = 592,b = 357,
p = 7066125300686093818828868600858730687792498980

97630176052345875203116173371050464495535765997184

12087023157743527914173027880612549152925893965244

55854547412930821706001777388233628382036647180957

10511891561767688163446992081050915385333639994129

75733618190464709094803803163968319799200086181544

51680828023017288803231747601847767908657589996474

63403686417843437287149911574497989907909149673611

22128203357908982556730725948241307410998309683403

13570183446616617950821932000477100720160399088021

33857985860785937758668013110558845552099425659027

67953591074394931972664914027713315544580116256428

90216302214633795527.

C. Details of decryption proof forgery

This section shows how to generate a fake proof of decryp-

tion that passes verification, as required in Section VII.

Suppose the prover (who knows x) has an ElGamal ciphertext

(C0,C1), computed with generator g and public key pk = gx.

She wishes to prove that this ciphertext decrypts to m, so she

computes C′
1 =C1/m and proves that C′

1 is a correct decryption

factor for that ciphertext, that is C′
1 =Cx

0, or equivalently that

(g, pk,C0,C1,m) satisfy Equation 2. She computes a Chaum-

Pedersen proof as follows:

1) Pick a random a.

2) set B0 = ga and B1 =Ca
0 .

3) Compute c = H(pk,C′
1,B0,B1), where H is a crypto-

graphic hash function.

4) Compute z = a+ cx.

The proof is (c,z). The verification proceeds by recomputing

B0 = gz(pk)−c and B1 = Cz
0(C

′
1)

−c, then verifying that c =
H(pk,C′

1,B0,B1).

D. Exploiting the problem

The problem is that in Step 3, C0 is not included in the

hash (and nor is g). This allows an adaptive cheating prover

to generate a fake proof by first calculating c, then choosing

C0 afterwards. Here is how this can work.

1) Pick a random a, a random s, and a random t.
2) Set B0 = ga, C′

1 = gs and B1 = gt .

3) Compute c = H(pk,C′
1,B0,B1) (as expected).

4) Compute z = a+ cx (as expected).

5) Set C0 = (B1(C′
1)

c)
1
z = g(t+sc)/z.

It can be observed that (c,z) pass verification as a decryption

proof that (g, pk,C0,C′
1) satisfy Equation 2. However, it is

highly unlikely that this is truthful, i.e. that C′
1 =Cx

0. Taking

logarithms base g, this equation would be satisfied only if

s = x(t + sc)/z (mod q), i.e., if s(z− cx) = xt (mod q) or,

using the definition of z, if sa = xt (mod q). But a,s and t are

independent values chosen from Zq (where q is the size of the

ElGamal group, around 22047 for the proposed parameters), so

this coincidence occurs with negligible probability. Hence we

have a valid proof for a fact that is not true.

We note that the cheating strategy described above does not

depend on a, s and t to be random: any value could be picked

for them, and the proof would still be considered to be valid.

It is just unclear whether specific choices could lead to a more

dangerous attack.

E. Other cryptographic issues

Here is a short list of other problems we have noticed. They

do not seem to lead to attacks, but they do undermine the

assumptions of some components.

1) The Fiat-Shamir transform in other proofs: The Fiat-

Shamir heuristic is used throughout the sVote code base, so

there may be numerous other examples in which the proofs are

not sound. We did not check most of them, and the impact of

a lack of soundness may vary quite a lot: the errors described

above break soundness of proofs in both cases, but they lead

to very different exploits. In particular, all the sVote proofs

based on a non-interactive variant of Maurer’s generic protocol

(including Schnorr’s proof, the Exponentiation proof, proofs of

plaintext equality, etc.) appear to not be adaptively secure. It is

plausible that this weakness could be exploited in other ways.

To illustrate our concern, we show a second brief example

with the Schnorr proof. The sVote Audit document [12, Section

11.1.1 & 11.1.2] describes the construction of Schnorr proofs,

which are proofs of knowledge of r such that C = gr. The proof

is (roughly) computed by computing B = ga, then c = H(C|B),
then z = a+ cr. The verification proceeds by verifying that

gz = BCc and c = H(C|B). But the proof itself contains no

reference to g (g is not input to the hash function), even though

g is definitely part of the statement.

As a result, for any given C and B in the group, we can

compute c = H(C|B) and pick a random z, then decide that

g = (BCc)1/z. This would make (according to the protocol

specification) a valid Schnorr proof of knowledge of the discrete

log of C in base g, even though there is no reason to think that

the prover truly knows that discrete log.

It is unclear how this alone would lead to an attack on the

system. The Schnorr proof is used by the CreateVote algorithm

to produce proofs w.r.t. the standard group generator g, which

is not picked by the prover in this case. Is is still uncomfortable

that the soundness of this proofs depends on external factors.

2) Missing verification steps in OR Proof: The code base

defines a 1-out-of-n zero knowledge proof construction (OR-

Proof)14 that contains a critical flaw which would allow a

malicious prover to trick the verifier into accepting an element

that does not belong to the required set of n elements.

14The proof appears in scytl-cryptolib/cryptolib-
proofs/src/main/java/com/scytl/cryptolib/proofs/maurer/
factory/ORProofGenerator.java and its ver-
ification process in scytl-cryptolib/cryptolib-
proofs/src/main/java/com/scytl/cryptolib/proofs/maurer/factory/ORProofVerifier.java

The protocol implemented appears to follow the disjunctive

proof approach of Cramer, Damgård and Schoenmakers [20]

for Sigma protocols (among which the Schnorr and the Chaum-

Pedersen protocols discussed above). In well defined 1-out-of-

n protocols, there is one challenge c sent by the verifier (or

provided by a random oracle), and the prover needs to answer

with n more challenges c1, . . . ,cn, such that c = ∑n
i=1 ci. The

verifier must then verify this equality: if it is not satisfied, then

the soundness of the protocol completely breaks, and the prover

can make a proof that passes verification even if all of the n
statements are false.

In the Swiss Post/Scytl code base this check is not performed,

the result of which is that the Verifier can be tricked into

verifying proofs that do not encode any of the elements that

the OR proof is supposed to check against.

This ORProof is not used by the sVote protocol, and we

have confirmed with Scytl that the ORProof construction is

not used in any active voting system, and has only been used

in internal prototypes. Even with this caveat, the existence of

another broken zero knowledge protocol construct, in a code

base submitted for review for national elections, raises further

doubts about the integrity of this code.

3) Non-collision-resistant hash function: The hash function

inputs numbers in a sequence of characters without describing

the lengths or the types. This would mean, for example, that

31,7 would hash to the same thing as 317 and 3,17. It is not

immediately clear how this could be used to generate a false

proof, but it breaks the main cryptographic assumption behind

the secure hash function—it certainly does not behave like a

random oracle. At the very least, this seems to invalidate an

assumption of the formal proofs.

There is again an apparently-correct implementation, in

RandomOracleHash.java. That hash is used in the

mixnet, but for some reason the non-collision-resistant one

is used in the proof library based on the Maurer framework.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

