
Addendum to How not to prove your
election outcome

The use of non-adaptive zero knowledge proofs in the
Scytl-SwissPost Internet voting system, and its

implications for cast-as-intended verification

Sarah Jamie Lewis1, Olivier Pereira2, and Vanessa Teague3

1Open Privacy Research Society, sarah@openprivacy.ca
2UCLouvain – ICTeam, B-1348 Louvain-la-Neuve, Belgium,

olivier.pereira@uclouvain.be
3The University of Melbourne, Parkville, Australia,

vjteague@unimelb.edu.au

March 29, 2019

This note extends our earlier analysis of the use of the weak Fiat-Shamir
transform in the Scytl-SwissPost Internet voting system. Here we show that
a cheating client can perform essentially the same attack we described in
“How not to prove your election outcome.” In the client case, this involves
submitting a nonsense vote while successfully faking a proof that its partial
return codes match the vote. The effect would be that the voter would receive
exactly the right return codes as if their vote had been properly cast, but at
decryption time the vote would be nonsense that would not be counted.

We notified SwissPost of these findings on Wednesday March 27th.
This note should be read as an added section of our prior report on this same weak-

ness [LPT19].
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1 Producing a false ballot validity proof

The same issue within the Fiat-Shamir transform can be exploited to subvert the in-
dividual verifiability of sVote: an honest voter could submit her/his vote intent to a
corrupted voting client, which would encrypt a nonsense vote instead and submit that
nonsense vote to the servers. Honest servers would accept it and send back to the voter
the return codes he/she is expecting to see. The voter would then consider that her/his
vote intent was correctly captured. However, when this vote was decrypted after being
mixed, it would be invalid.

1.1 Ballot preparation and individual verifiability process

The discussion below focuses, for simplicity, on the case in which a voter wants to submit
a single vote v encoded as a prime quadratic residue mod p. The extension to general
ballots in which multiple (prime) votes would be used is immediate. We follow the
notations of the sVote protocol specification [Scy18, Section 5.4], in a slightly simplified
way.

The ballot preparation and individual verifiability processes rely on three keys.

1. An election public key EL. The corresponding private key is in the hands of the
CCM ’s, in a distributed form. Votes are encrypted with this public key and, after
validation, are mixed and decrypted by the CCM ’s.

2. A choice return code public key pk. The corresponding private key is in the hands
of the CCR’s, in a distributed form. Partial return codes are encrypted with this
public key. They are then processed by the CCR’s, leading to the decryption and
sending of the choice return codes to the voting client, for verification on their vote
verification card.

3. A verification card public key K, which is unique per verification card. The cor-
responding private key k is in the hands of the voting client. (We assume that its
distribution is trusted.) The private key is used by the voting client to produce
the partial return codes, which are then encrypted using pk.

The process of preparation and verification of a vote v is then as follows (we focus on
the relevant steps):

1. The voting client computes the ciphertext E1 = (E10, E11) = (gr, v · ELr).

2. The voting client computes a partial return code pCC = vk, which is then en-
crypted with pk as E2 = (gr

′
, pCC · pkr′).

3. The Schnorr protocol is used to produce a proof of knowledge πs of r used in E10.

4. F1 is computed as Ek
1 , that is, (F10, F11) = (Ek

10, E
k
11), and a proof of exponentiation

πe is computed to make sure that (K,F1) is indeed equal to (gk, Ek
1 ) for a secret

k.
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5. A plaintext equality proof πp is used to show that F1 and E2 encrypt the same
value (that is, pCC), w.r.t. EL in the first case and w.r.t. pk in the second case.

6. The vote defined as E1, E2, πs, F1, πe, πp is submitted to the server.

7. The proofs are verified and, using E2 only, the return codes are computed and sent
back to the voter, who can then verify them on his verification card.

1.2 The proof of exponentiation

The proof of exponentiation used in sVote [Scy18, Sec. 9.1.5 and 9.1.14] is a slight
generalisation of the Chaum-Pedersen proof implemented incorrectly for decryption.
The exponentiation proof presents the same weakness in its implementation of the Fiat-
Shamir transform.

In the context described above, it proceeds as follows:

1. Pick a random a and compute (B1, B2, B3) = (ga, Ea
10, E

a
11).

2. Compute c = H(K,F1,B1,B2,B3).

3. Compute z = a+ ck.

The proof consists of (c, z), and is verified by computing B′
1 = gz/Kc, B′

2 = Ez
10/F

c
10,

B′
3 = Ez

11/F
c
11, and checking that c equals H(K,F1, B

′
1, B

′
2, B

′
3).

1.3 Lack of adaptive soundness of the proof of exponentiation

As for the Chaum-Pedersen proof discussed above, this proof lacks adaptive soundess.
In particular, g and E1 are not hashed, so there is no guarantee that they are chosen
before the proof is computed.

In what follows, we assume that g was generated honestly, in a verifiable way (but
this is not required by the sVote specification) and focus on E1. A malicious adaptive
prover could then proceed as follows.

Start by picking F1 as a random encryption of pCC for the vote the voter intended,
that is, as (gr, pCC · ELr). Then:

1. Pick random (a1, a2, a3) and compute (B1, B2, B3) = (ga1 , ga2 , ga3).

2. Compute c = H(K,F1, B1, B2, B3).

3. Compute z = a1 + ck.

The proof is (c, z). Then, set E1 = ((B2 ·F c
10)

1/z, (B3 ·F c
11)

1/z), which guarantees that the
verification equation passes, despite the fact that F1 6= Ek

1 with overwhelming probabil-
ity, meaning that E1 will not be an encryption of v except with negligible probability.
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1.4 Why individual verifiability fails

Running the previous steps provides (E1, F1, πe) that pass verification. F1 is a valid
encryption of the right partial return code, but E1 is not an encryption of the right vote.

In order to complete the ballot, we can compute E2 in a perfectly honest way, using
whatever vote the voter asked for (which will not be cast) and the true pCC. We then
compute πs in a completely honest way by observing that E10 = (B2 ·F c

10)
1/z = g(a2+rc)/z,

so (a2 + rc)/z is the random value used to produce E10. Finally, we compute πp in a
perfectly honest way as well, since it corresponds to a true statement for which we have
a witness: F1 and E2 do encrypt the same value, which is the correct function of the
intended vote.

All the proofs are valid, so E2 will be used to derive the return codes corresponding
to the vote intent v, which will then be accepted by an honest voter, who will have
his/her vote confirmed. However, when E1 is decrypted (after being processed through
the mixnet), it will be declared invalid.
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