
On the application of Bloom Filter Hierarchies representing

Sub-word Token Bigram Occurrence to Probabilistic Full Text

Search

Sarah Jamie Lewis *�

May 29, 2024

1 Motivating Problem

This note is rooted in the problem of efficient and
decentralized document search (where the indexing
and/or search operations are conducted by a num-
ber of distinct distributed entities).

1.1 This Work

We present a method for building a searchable in-
dex of documents through a combination of sub-
word tokenization and bloom filters, this struc-
ture permits efficient (probabilistic) full text search
where both indexing and search can be highly par-
allelized (and, potentially, distributed).
We quantify performance through a CUDA-

based prototype that can retrieve sorted (ranked)
search results over a recent Wikipedia dataset
(|N | = 6325358) at around 19ms per query token
.

2 Related Work

Bloom filters[2] have a long history in document
search, with the use case motivating much of the
early research (e.g. [12]). The application of bloom
filters to detecting and removing duplicate docu-
ments (e.g. [5]), likewise has a similar history.
Hierarchical Bloom Filters are less common

in the literature, and where they do appear, are
mostly constrained to considering structures where
the filters in consideration represent documents,
with the root bloom filters representing a superset

*Open Privacy Research Society (sarah@openprivacy.ca)
�Blodeuwedd Labs (sarah@blodeuweddlabs.com)

of documents contained by their child nodes (e.g.
see [8][9]).

More recently, Hierarchical Interleaved Bloom
Filters[10] have been proposed for approximate
matching of genome samples. This technique is
analogous to the method outlined above where
multiple samples are coalesced into a hierarchy of
bloom filters suitable for matching.

Counting Bloom Filters are a generalization
of bloom filters that permit an efficient removal
operation[3], at the cost of false negatives[4].

3 Our Approach

Given a document we first tokenize it using a sub-
word tokenizer1. Once complete, we proceed se-
quentially through the list of tokens and make a
note of each token-pair (bigrams).

These sequential token-pairs can represent indi-
vidual terms, common subterms, and very common
multi-word terms.

Next we derive a count of each bigram, and fi-
nally instantiate a set of bloom filters representing
the occurrence of each bigram in the document:

� Every bigram is inserted into the top-level
bloom filter and thus this bloom filter can be
used as a probabilistic indication of the pres-
ence of a bigram in the document.

� At each subsequent level (l) of bloom filter we
only insert a bigram if it has at least l = ln(n)
occurrences in the document. As such the

1For our prototype we used an implementation of the
open source Mistral[6] v1 BPE/SentencePiece[7] tokenizer
with a vocab size of 32k.

1

more common a term in a document the more
levels it is represented in.

Each bloom filter can be parameterized based on
the documents contents to ensure a consistent false
positive rate. These parameterization impact both
the size of the bloom filters themselves and the
number of bloom filters representing the document.

4 Searching the Index

The approach that we take for search is analo-
gous to the long-standing term-frequency/inverse-
document-frequency[13] (tf-idf) but applied to
token-pairs instead of word terms.
Conceptually, we tokenize and construct a set of

overlapping bigrams for the search term, and then
use the bloom filters to estimate the occurrence of
each bigram in each document. We can then cal-
culate the tf-idf score by multiplying the bigram
frequency of the document by the idf score calcu-
lated over all documents. Finally, to arrive at a
document score we calculate the cosine-similarity
of resulting vector of term-level tf-idf scores with
the query vector itself - arriving at a score between
0 and 1.
We can then sort the document pool by this

score.
Breaking this down for our CUDA-based proto-

type:

1. The query is tokenized and split into a se-
quence of overlapping bigram terms (e.g.
”quick brown fox jumped” might become
”quick brown” and ”brown fox” etc.) (though
in practice we use a modified sentencepiece for
tokenization) and sent to the GPU

2. (document-parallel) For each n-gram term, a
probabilsitic term frequency score is computed
for each document in parallel using the filters
defined above (and a global frequency term is
also calculated)

3. (document-parallel) Each document computes
an aggregate tf-idf score and if that score is
above a certain threshold it adds itself (atom-
ically) to a resulsts list

4. (core-parallel) The results list is sorted (using
a parallel bitonic sort)

Because of the method of indexing, the efficacy
of search improves with longer search terms (see
5.3.1 for experimental validation).

5 Discussion

The presented index structure has a few interesting
features regardless of the methods used to tokenize
the source documents and queries:

1. We can definitively identify the occur-
rence of a sentence in the source docu-
ment (e.g. an index that contains token bi-
grams representing ”The quick” AND ”quick
brown” AND ”brown fox” AND ”fox jumps”
and so on, likely represents a document that
contains ”The quick brown fox jumps over the
lazy dog”)

2. The probabilities of each bloom filter are
tuneable when indexing, so each document
can be represented by a variable sized in-
dex. (See 5.4.1 for a possible application of
this property)

3. Each index can be (re-)computed inde-
pendent of each other (and be be included
in a searches dynamically - i.e. this approach
permits sub-index queries). This allows for
some flexibility when searching, e.g. trivially
restricting to a set of documents, or expanding
to others.

And a few critical considerations:

1. There is little to no semantic content in the
document indexes themselves, they only ”un-
lock” information with respect to a particular
query (and any information they do unlock is
probablistic in nature)

2. There is an explicit tradeoff between false pos-
itives and the size of a document index i.e. the
smaller a document index the more likely it is
to match against a query.

3. Shorter queries are more likely to match a
larger number of documents (as true negatives
from one part of the query are less likely to
cancel out false positives from another).

2

5.1 False Positives

Because bloom filters are a probabilistic data struc-
ture the rate of false positives is tightly determined
by the parameterization of each filter.

The hierarchical construction is designed to min-
imize the impact of individual false positives and it
is important that every level be independent from
each other (e.g. by using different hash algorithms
at each level).

As noted above, the efficacy of search improves
with longer search terms. This happens because the
rate of false positives is spread out over the docu-
ment pool, but a single document which matches
the query will always positively match the given
input.

5.2 Tokenization

While there is nothing inherent in the index struc-
ture which prevents using an alternative tokeniza-
tion scheme (e.g. space-delineated / full word), by
leveraging recent advances in subword document
tokenization we are able to reduce the total number
of unique bigrams we must possibly consider - with
modern tokenizers providing significantly reduced
representations of common language terms e.g. the
word ”Hello” is so common in many corpora that
it represented by a single 2 byte token.

This has significant implications when consider-
ing the choice of false positive rates for our bloom
filters - with our choice of sub-word tokenization
vocabulary we must at-most be able to deal with
1024000000 = 320002 bigrams (of which many are
very unlikely to occur in any source document).
This strong upper bound makes reasonable false
positive rates (between 1 and 5%) tractable for doc-
ument sets containing millions of documents.

Using such a tokenization scheme also means we
are able to apply our search scheme over documents
containing programming language code, documents
containing emojis, foreign language documents etc.
without changing the indexing structure, or the
query interface.

5.3 Performance

Each document can be tokenized, and indexed sep-
arately from every other document. As such the

process of indexing can be done in parallel, and
each document can be parameterized separately.

The size of the index depends on the param-
eterization. For our prototype we indexed a re-
cent Wikipedia dump, a total of over 6 million
articles (for clarity we filter out category, disam-
biguation, and other meta pages from the index-
ing process), with an average word count of around
700 words. The resulting index would be between
4GB to 12GB in size depending on the parameters
used (an average of between 500 bytes and 5kb per
document - including auxillary information like an
encoded representation of the document title and
URL - useful when displaying results).

For search there are multiple ways of optimizing
the runtime; we can parallelize the process of deter-
mining term frequency for each document, and once
complete we can concurrently calculate the td-idf
score calculation. Finally, the sorting stage can also
be performed in parallel using bitonic search[1].

5.3.1 Experimental Validation

Implementing the above procedure in CUDA2,
and pre-loading an efficient representation of the
dataset bloom filters into the VRAM prior to
searching, we investigated the performance char-
acteristics of this scheme over different lengths of
query tokens over the Wikipedia dataset (see Fig-
ure 1).

For this experiment we limited consideration to a
filter hierarchy constructed with fixed false positive
rates (p = 0.05 for the presence filter, and p = 0.01
for each subsequent occurrence level) i.e. for every
document the index consisted of a token bigram
presence filter with a 5% false positive rate, and 3
additional filters representing at least 1 (level 1), at
least 2 (level 2), and at least 8 (level 3) occurrences
of the token bigram. This resulted in an index size
of 9GB (both on-disk and in VRAM)3. Tuning
these parameters for storage efficiency and search
efficacy is likely an interesting avenue for future
research.

To source test queries we randomly selected be-
tween 2 and 16 consecutive tokens from 10, 000 of

2All experiments were done on a low end NVIDIA
GeForce RTX 3060 with 12 GB of VRAM.

3We note that, at these parameters, the size of the index
is approximately the size of the uncompressed, formatting-
stripped text representation of the page contents.

3

Query Token Length 2 4 8 16
Mean Query Time 38ms 72ms 152ms 320 ms

Mean Query Time per Query Length 19ms 18ms 19ms 20ms
Mean Ranking of Found Documents 22 10 3 1

Miss Rate 0.774 0.320 0.056 0.015

Figure 1: Performance characteristics of our CUDA prototype searching over |N | = 6325358 documents
for various lengths of input queries (|Q| = 10000) . A miss is defined as any search where the target
document was not returned in the first 100 ranked results.

the source documents (wiki pages), and used the
selected text as a query; we would typically expect
the source document to appear high in the rankings
for such a query 4

As the query grows we observe the total time of
a search increases (but the mean time per query
token stays constant at around 19 milliseconds /
query); additionally as query length grows we ob-
serve that the efficacy of the search improves, by
the time we reach query lengths of 16 tokens, the
source document of the query tokens is typically
always the first ranked result.

5.4 Possible Extensions / Future
Work

In this section we present a select number of idea
that require further investigation and/or experi-
mental validation.

5.4.1 Mip Map Search

As stated above, there is an explicit tradeoff be-
tween false positives and the size of a document
index. Further, the smaller a document index is,
the more likely it is to match against any given
query.

This does however suggests a ”mipmap” ap-
proach where a tiny index is first computed against
to fast-reject from the complete corpus, and then a
more expensive index is used to filter the remaining
documents.

4This is not always the case as there is a non-zero chance
of randomly selecting a set of tokens that match a generic
phrase appearing across many documents e.g. ”is a species
of” or ”was born in” etc. We make no attempt to filter out
such generic terms.

5.4.2 Page-Rank Post-Analysis

For a full application to web search, we need to
take into account more factors than full text match-
ing e.g. if searching for ”Alan Turing” (which in
token bigrams may be represented by something
like ”Al-ant-uring”) - the results returned lean to-
wards documents that mention Alan Turing (e.g.
the Alan Turing Memorial, Turing award winners
etc.) rather than articles about Alan Turing (which
may very rarely use their full name).

One approach that may help is to apply a page-
rank[11] like analysis to documents after the initial
filtering (on the assumption that documents men-
tioning Alan Turing are more likely to link to doc-
uments about Alan Turing).

5.4.3 Tuning Parameters

In our experimental validation we only considered
one possible parameterization of the search index.
It is unlikely that this parameterization is the most
efficient in any measure. More work is needed to
understand the best structure for the bloom filter
levels (the number levels of occurance filters / the
occurrence threshold be for each level etc.) and
the false positive rate assigned to each level (and
whether such rates should be static for each level,
or dynamically assigned per document).

6 Conclusion

We present a method for building a searchable in-
dex of documents through a combination of sub-
word tokenization and bloom filters, and a method
for efficiently (and probablistically) providing full
text search over this index in a way that is signifi-
cantly parallelizable.

4

Additional research is needed to understand how
to best parameterize this structure.

References

[1] Ranieri Baraglia, Gabriele Capannini,
Franco Maria Nardini, Fabrizio Silvestri, et al.
Sorting using bitonic network with cuda. In
7th Workshop on Large-Scale Distributed Sys-
tems for Information Retrieval (LSDS-IR),
2009.

[2] Burton H Bloom. Space/time trade-offs in
hash coding with allowable errors. Commu-
nications of the ACM, 13(7):422–426, 1970.

[3] Flavio Bonomi, Michael Mitzenmacher, Rina
Panigrahy, Sushil Singh, and George Varghese.
An improved construction for counting bloom
filters. In Algorithms–ESA 2006: 14th An-
nual European Symposium, Zurich, Switzer-
land, September 11-13, 2006. Proceedings 14,
pages 684–695. Springer, 2006.

[4] Deke Guo, Yunhao Liu, Xiangyang Li, and
Panlong Yang. False negative problem of
counting bloom filter. IEEE transactions on
knowledge and data engineering, 22(5):651–
664, 2010.

[5] Navendu Jain, Mike Dahlin, and Renu Tewar.
Using bloom filters to refine web search results.
In Eighth International Workshop on the Web
and Databases (WebDB’05), 2005.

[6] Albert Q Jiang, Alexandre Sablayrolles,
Arthur Mensch, Chris Bamford, Deven-
dra Singh Chaplot, Diego de las Casas, Florian
Bressand, Gianna Lengyel, Guillaume Lam-
ple, Lucile Saulnier, et al. Mistral 7b. arXiv
preprint arXiv:2310.06825, 2023.

[7] Taku Kudo and John Richardson. Sen-
tencepiece: A simple and language inde-
pendent subword tokenizer and detokenizer
for neural text processing. arXiv preprint
arXiv:1808.06226, 2018.

[8] David Lillis, Frank Breitinger, and Mark
Scanlon. Hierarchical bloom filter trees
for approximate matching. arXiv preprint
arXiv:1712.04544, 2017.

[9] David Lillis, Frank Breitinger, and Mark Scan-
lon. Expediting mrsh-v2 approximate match-
ing with hierarchical bloom filter trees. In
Digital Forensics and Cyber Crime: 9th Inter-
national Conference, ICDF2C 2017, Prague,
Czech Republic, October 9-11, 2017, Proceed-
ings 9, pages 144–157. Springer, 2018.

[10] Svenja Mehringer, Enrico Seiler, Felix Droop,
Mitra Darvish, René Rahn, Martin Vingron,
and Knut Reinert. Hierarchical interleaved
bloom filter: enabling ultrafast, approximate
sequence queries. Genome Biology, 24(1):131,
2023.

[11] Lawrence Page, Sergey Brin, Rajeev Motwani,
and Terry Winograd. The pagerank citation
ranking: Bring order to the web. Technical
report, Technical report, stanford University,
1998.

[12] Michael A. Shepherd, William J Phillips, and
C-K Chu. A fixed-size bloom filter for search-
ing textual documents. The Computer Jour-
nal, 32(3):212–219, 1989.

[13] Karen Sparck Jones. A statistical interpreta-
tion of term specificity and its application in
retrieval. Journal of documentation, 28(1):11–
21, 1972.

5

